Applied Microbiology and Biotechnology

, Volume 100, Issue 7, pp 3347–3360 | Cite as

Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body

  • Maria Irianni-Renno
  • Daria Akhbari
  • Mitchell R. Olson
  • Adam P. Byrne
  • Emilie Lefèvre
  • Julio Zimbron
  • Mark Lyverse
  • Thomas C. Sale
  • Susan K. De Long
Environmental biotechnology

Abstract

Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.

Keywords

Biodegradation LNAPL Petroleum hydrocarbons Microbial communities Pyrosequencing 

Supplementary material

253_2015_7106_MOESM1_ESM.pdf (1.8 mb)
ESM 1(PDF 1.76 MB)

References

  1. Abed RMM, Safi NMD, Koster J, de Beer D, El-Nahhal Y, Rullkotter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. App Environ Microbiol 68(4):1674–1683. doi:10.1128/aem.68.4.1674-1683.2002 CrossRefGoogle Scholar
  2. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12(10):2783–2796. doi:10.1111/j.1462-2920.2010.02248.x PubMedGoogle Scholar
  3. Aburto A, Peimbert M (2011) Degradation of a benzene-toluene mixture by hydrocarbon-adapted bacterial communities. Ann Microbiol 61(3):553–562. doi:10.1007/s13213-010-0173-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Acosta‐González A, Rosselló‐Móra R, Marqués S (2013) Characterization of the anaerobic microbial community in oil‐polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15(1):77–92CrossRefPubMedGoogle Scholar
  5. Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol 44(2):95–106. doi:10.1007/s00248-002-0005-8 CrossRefPubMedGoogle Scholar
  6. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917. doi:10.1038/ismej.2010.171 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chadalavada S, Datta B, Naidu R (2012) Optimal identification of groundwater pollution sources using feedback monitoring information: a case study. Environ Forensics 13(2):140–153. doi:10.1080/15275922.2012.676147 CrossRefGoogle Scholar
  8. Clarke KR (1993) Non‐parametric multivariate analyses of changes in community structure. Aus J Ecol 18(1):117–143CrossRefGoogle Scholar
  9. Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011. doi:10.4061/2011/941810
  10. Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405CrossRefPubMedGoogle Scholar
  11. DeJong T (1975) A comparison of three diversity indices based on their components of richness and evenness. Oikos 222–227Google Scholar
  12. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64(10):3869–3877PubMedPubMedCentralGoogle Scholar
  13. dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3), e16943. doi:10.1371/journal.pone.0016943 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  15. Elshahed MS, Bhupathiraju VK, Wofford NQ, Nanny MA, McInerney MJ (2001) Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” strain SB in syntrophic association with H-2-using microorganisms. Appl Environ Microbiol 67(4):1728–1738. doi:10.1128/aem.67.4.1728-1738.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Evans PN, Hinds LA, Sly LI, McSweeney CS, Morrison M, Wright A-DG (2009) Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii). Appl Environ Microbiol 75(8):2598–2602CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fahrenfeld N, Cozzarelli IM, Bailey Z, Pruden A (2014) Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microbial Ecol 68(3):453–462. doi:10.1007/s00248-014-0421-6 CrossRefGoogle Scholar
  18. Fardeau ML, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149CrossRefPubMedGoogle Scholar
  19. Ghazali FM, Rahman R, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67. doi:10.1016/j.ibiod.2004.02.002 CrossRefGoogle Scholar
  20. Glatz BA, Goepfert J (1976) Defined conditions for synthesis of Bacillus cereus enterotoxin by fermenter-grown cultures. Appl Environ Microbiol 32(3):400–404PubMedPubMedCentralGoogle Scholar
  21. Hao OJ, Chen M, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26(1):155–187CrossRefGoogle Scholar
  22. Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10(5):331–339CrossRefPubMedGoogle Scholar
  23. Hers I, Jourabchi P, Lahvis MA, Dahlen P, Luo EH, Johnson P, DeVaull GE, Mayer KU (2014) Evaluation of seasonal factors on petroleum hydrocarbon vapor biodegradation and intrusion potential in a cold climate. Groundw Monit Remediat 34(4):60–78Google Scholar
  24. Huang YX, Li L (2014) Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ Res 86(3):277–284. doi:10.2175/106143013x13807328849495 CrossRefPubMedGoogle Scholar
  25. Huntley D, Beckett GD (2002) Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. J Contam Hydrol 59(1–2):3–26. doi:10.1016/s0169-7722(02)00073-6 CrossRefPubMedGoogle Scholar
  26. Illman WA, Alvarez PJ (2009) Performance assessment of bioremediation and natural attenuation. Crit Rev Environ Sci Technol 39(4):209–270CrossRefGoogle Scholar
  27. Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171(2):107–114. doi:10.1007/s002030050685 CrossRefPubMedGoogle Scholar
  28. Jennings ME, Schaff CW, Horne AJ, Lessner FH, Lessner DJ (2014) Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen. Microbiology 160(Pt 2):270–278CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jørgensen KS, Salminen JM, Björklöf K (2010) Monitored natural attenuation. Bioremediation. Springer, pp 217–233Google Scholar
  30. Jung M-Y, Park S-J, Min D, Kim J-S, Rijpstra WIC, Damsté JSS, Kim G-J, Madsen EL, Rhee S-K (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Appl Environ Microbiol 77(24):8635–8647CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karimi B, Habibi M, Esvand M (2015) Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J Environ Health Sci Eng 13. doi:10.1186/s40201-015-0175-1
  32. Kleikemper J, Pombo SA, Schroth MH, Sigler WV, Pesaro M, Zeyer J (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 71(1):149–158CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66(1):143–157. doi:10.1111/j.1574-6941.2008.00536.x CrossRefPubMedGoogle Scholar
  34. Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94(4):851–873. doi:10.1007/s00253-012-4025-0 CrossRefPubMedGoogle Scholar
  35. Landmeyer J, Chapelle F, Petkewich M, Bradley P (1998) Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA. Environ Geol 34(4):279–292CrossRefGoogle Scholar
  36. Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108(5):400–407CrossRefPubMedGoogle Scholar
  37. Luo F, Gitiafroz R, Devine CE, Gong YC, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80(14):4095–4107. doi:10.1128/aem.00717-14 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5. doi:10.3389/fmicb.2014.00332
  39. McCoy K, Zimbron J, Sale T, Lyverse M (2014) Measurement of natural losses of LNAPL using CO2 traps. Groundwater 53(4):658–667. doi:10.1111/gwat.12240 CrossRefGoogle Scholar
  40. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104(18):7600–7605CrossRefPubMedPubMedCentralGoogle Scholar
  41. Morris BE, Herbst FA, Bastida F, Seifert J, von Bergen M, Richnow HH, Suflita JM (2012) Microbial interactions during residual oil and n‐fatty acid metabolism by a methanogenic consortium. Environ Microbiol Rep 4(3):297–306CrossRefPubMedGoogle Scholar
  42. Mountfort D, Brulla W, Krumholz LR, Bryant M (1984) Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34(2):216–217CrossRefGoogle Scholar
  43. Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microbial Biotechnol 4(5):585–602CrossRefGoogle Scholar
  44. Newman WA, Kimball G, Consultants DE (1991) Dissolved oxygen mapping: a powerful tool for site assessments and ground water monitoring. In: Proceedings of the Fifth National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring, and Geophysical MethodsGoogle Scholar
  45. Ortega-Calvo J-J, Alexander M (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl Environ Microbiol 60(7):2643–2646PubMedPubMedCentralGoogle Scholar
  46. Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:1–8. doi:10.3389/fmicb.2011.00081 CrossRefGoogle Scholar
  47. Polissi A, Bestetti G, Bertoni G, Galli E, Deho G (1990) Genetic analysis of chromosomal operons involved in degradation of aromatic hyrocarbons in Pseudomonas putida TMB. J Bacteriol 172(11):6355–6362PubMedPubMedCentralGoogle Scholar
  48. Ravot G, Ollivier B, Magot M, Patel B, Crolet J, Fardeau M, Garcia J (1995) Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales. Appl Environ Microbiol 61(5):2053–2055Google Scholar
  49. ITRC (Interstate Technology & Regulatory Council) (2009a) Evaluating LNAPL remedial technologies for achieving project goals. LNAPL-2. Interstate Technology & Regulatory Council, LNAPLs Team, Washington, D.C. www.itrcweb.org
  50. ITRC (Interstate Technology & Regulatory Council) (2009b) Evaluating natural source zone depletion at sites with LNAPL. LNAPL-1. Interstate Technology & Regulatory Council, LNAPLs Team, Washington, D.C. www.itrcweb.org
  51. Roggemans S, Bruce CL, Johnson PC, Johnson RL (2001) Vadose zone natural attenuation of hydrocarbon vapors: an empirical assessment of soil gas vertical profile data. API Soil and Water Research Bulletin 15Google Scholar
  52. Roh JW, Bang JH, Nam DH (1992) Nutritional requirements of Lysobacter lactamgenus for the production of cephabacins. Biotechnol Lett 14(6):455–460CrossRefGoogle Scholar
  53. Roy S, Vishnuvardhan M, Das D (2014) Improvement of hydrogen production by newly isolated Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1. Int J Hydrog Energy 39(14):7541–7552. doi:10.1016/j.ijhydene.2013.06.128 CrossRefGoogle Scholar
  54. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108(6):501–507. doi:10.1016/j.jbiosc.2009.06.005 CrossRefPubMedGoogle Scholar
  55. Salamanca D, Engesser KH (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environ Sci Pollut Res 21(22):12757–12766. doi:10.1007/s11356-014-3206-z CrossRefGoogle Scholar
  56. Sale T (2003) Answers to frequently asked questions about managing risk at LNAPL sites. API Soil and Water Research Bulletin (18): 1–20Google Scholar
  57. Seagren EA, Rittmann BE, Valocchi AJ (2002) Bioenhancement of NAPL pool dissolution: experimental evaluation. J Contam Hydrol 55(1):57–85CrossRefPubMedGoogle Scholar
  58. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45(13):5892–5899CrossRefPubMedGoogle Scholar
  59. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452CrossRefPubMedGoogle Scholar
  60. Simarro R, González N, Bautista LF, Molina MC (2013) Biodegradation of high‐molecular‐weight polycyclic aromatic hydrocarbons by a wood‐degrading consortium at low temperatures. FEMS Microbiol Ecol 83(2):438–449CrossRefPubMedGoogle Scholar
  61. Singh S, Sarma PM, Lal B (2014) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int J Hydrog Energy 39(9):4206–4214. doi:10.1016/j.ijhydene.2013.12.179 CrossRefGoogle Scholar
  62. Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75(9):2613–2620. doi:10.1128/aem.01955-08 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15(9):2517–2531. doi:10.1111/1462-2920.12133 CrossRefPubMedGoogle Scholar
  64. Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630. doi:10.1128/aem.02747-12 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S, Schmidt C, Hasselwander E, Harms H, Wendeberg A (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15(9):2603–2615. doi:10.1111/1462-2920.12168 CrossRefPubMedGoogle Scholar
  67. Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71(11):7008–7018CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microbial Biotechnol 4(6):710–724. doi:10.1111/j.1751-7915.2011.00260.x CrossRefGoogle Scholar
  69. Wang LY, Ke WJ, Sun XB, Liu JF, Gu JD, Mu BZ (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98(9):4209–4221. doi:10.1007/s00253-013-5472-y CrossRefPubMedGoogle Scholar
  70. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056CrossRefPubMedPubMedCentralGoogle Scholar
  71. Whitby C, Lund ST (2009) Applied microbiology and molecular biology in oil field systems. Springer, NetherlandsGoogle Scholar
  72. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74(3):792–801. doi:10.1128/aem.01951-07 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of TOL plasmid. J Bacteriol 124(1):7–13PubMedPubMedCentralGoogle Scholar
  74. Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19(2):247–257CrossRefPubMedGoogle Scholar
  75. Zeman NR, Renno MI, Olson MR, Wilson LP, Sale TC, De Long SK (2014) Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure. Biodegradation 25(4):569–585. doi:10.1007/s10532-014-9682-5 PubMedGoogle Scholar
  76. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401(6750):266–269CrossRefPubMedGoogle Scholar
  77. Zhalnina KV, Dias R, Leonard MT, de Quadros PD, Camargo FA, Drew JC, Farmerie WG, Daroub SH, Triplett EW (2014) Genome sequence of Candidatus Nitrososphaera evergladensis from group I. 1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 9(7), e101648CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maria Irianni-Renno
    • 2
  • Daria Akhbari
    • 2
    • 4
  • Mitchell R. Olson
    • 2
    • 5
  • Adam P. Byrne
    • 2
    • 6
  • Emilie Lefèvre
    • 2
    • 7
  • Julio Zimbron
    • 2
  • Mark Lyverse
    • 3
  • Thomas C. Sale
    • 2
  • Susan K. De Long
    • 1
  1. 1.Department of Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Department of Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA
  3. 3.Chevron Energy Technology CompanySan RamonUSA
  4. 4.Department of Geological Sciences, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  5. 5.Trihydro CorporationFort CollinsUSA
  6. 6.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA
  7. 7.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations