Skip to main content
Log in

Enzymatic processing of protein-based fibers

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aberg CM, Chen T, Olumide A, Raghavan SR, Payne GF (2004) Enzymatic grafting of peptides from casein hydrolysate to chitosan. Potential for Value-added Byproducts from Food Processing Wastes J Agric Food Chem J 52:788–793

    CAS  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J Biotechnol 127:508–519

    Article  CAS  PubMed  Google Scholar 

  • Arami M, Rahimi S, Mivehie L, Mazaheri F, Mahmoodi NM (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106:267–275

    Article  CAS  Google Scholar 

  • Arai T, Freddi G, Innocenti R, Kaplan DL, Tsukada M (2001) Acylation of silk and wool with acid anhydrides and preparation of water-repellent fibers. J Appl Polym Sci 82:2832–2841

    Article  CAS  Google Scholar 

  • Araújo R, Sliva C, Machado R, Casal M, Cunha AM, Rodriguez-Cabello JC, Cavaco-paulo A (2009) Proteolytic enzyme engineering: a tool for wool. Biomacromolecules 10:1655–1661

    Article  PubMed  Google Scholar 

  • Bishop DP, Shen J, Heine E, Hollfelder B (1998) The use of proteolytic enzymes to reduce wool-fibre stiffness and prickle. J Text I 89:546–553

    Article  CAS  Google Scholar 

  • Braaten AW (2005) Wool. In: Steele V (ed) Encyclopedia of clothing and fashion. Thomson Gale, London, pp. pp. 441–pp. 443

    Google Scholar 

  • Capar G, Aygun SS, Gecit MR (2008) Treatment of silk production wastewaters by membrane processes for sericin recovery. J Membrane Sci 325:920–931

    Article  CAS  Google Scholar 

  • Cardamone JM (2007) Enzyme-mediated crosslinking of wool part I: transglutaminase. Textile Res J 77:214–221

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Silva CJSM (2002) Treatment of animal hair fibres with modified proteases. European Patent. WO03097927

  • Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein–polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64:292–302

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Vazquez-Duhalt R, Wu CF, Bentley WE, Payne GF (2001) Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromolecules 2:456–462

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Small DA, Wu LQ, Rubloff GW, Ghodssi R, Vazquez-Duhalt R, Bentley WE, Payne GF (2003) Nature-inspired creation of protein-polysaccharide conjugate and its subsequent assembly onto a patterned surface. Langmuir 19:9382–9386

    Article  CAS  Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2004) Application of transglutaminases in the modification of wool textiles. Enzyme Microb Tech 34:64–72

    Article  CAS  Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2005) Transglutaminase treatment of wool fabrics leads to resistance to detergent damage. J Biotechnol 116:379–386

    Article  PubMed  Google Scholar 

  • Cortez J, Anghieri A, Bonner PLR, Griffin M, Freddi G (2007) Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Tech 40:1698–1704

    Article  CAS  Google Scholar 

  • Cui L, Du G, Chen J, Wang Q, Wang P, Fan X (2008) Effect of microbial transglutaminase on dyeing properties of natural dyes on wool fabric. Biocatal Biotransfor 26:399–404

    Article  CAS  Google Scholar 

  • Du GC, Cui L, Zhu Y, Chen J (2007) Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus. Enzym Microb Technol 40:1753–1757

    Article  CAS  Google Scholar 

  • Erlacher A, Sousa F, Schroeder M, Jus S, Kokol V, Cavaco-Paulo A, Guebitz GM (2006) A new cuticle scale hydrolysing protease from Beauveria brongniartii. Biotechnol Lett 28:703–710

    Article  CAS  PubMed  Google Scholar 

  • Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 125:281–294

    Article  CAS  PubMed  Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112

    Article  CAS  PubMed  Google Scholar 

  • Fu JJ, Nyanhongo GS, Gubitz G, Cavaco-Paulo A, Kim S (2012) Enzymatic colouration with laccase and peroxidase: recent progress. Biocatal Biotransfor 30:125–140

    Article  CAS  Google Scholar 

  • Gaffar-Hossain KM, Juan AR, Tzanov T (2008) Simultaneous protease and transglutaminase treatment for shrink resistance of wool. Biocatal Biotransfor 26:405–411

    Article  CAS  Google Scholar 

  • Ge F, Cai Z, Zhang H, Zhang R (2009) Transglutaminase treatment for improving wool fabric properties. Fibre Polym 10:787–790

    Article  CAS  Google Scholar 

  • Gulrajani ML, Agarwal R, Grover A, Suri M (2000) Degumming of silk with lipase and protease. Indian J Fibre Text Res 25:69–74

    CAS  Google Scholar 

  • Guo FY, Yang MY, Cao Y, Xing TL (2013) Preparation, structure and properties of ɛ-polylysine grafted silk fabric with laccase. Adv Mat Res 796:195–198

    Article  CAS  Google Scholar 

  • Gyung DK, Ki HL, Chang SK, Joong HN, Young HP (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol Res 12:534–539

    Article  Google Scholar 

  • Hakimi O, Knight DP, Vollrath F, Vadgama P (2007) Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B 38:324–337

    Article  Google Scholar 

  • Hu X, Kaplan D, Cebe P (2007) Effect of water on the thermal properties of silk fibroin. Thermochim Acta 461:137–144

    Article  CAS  Google Scholar 

  • Jin H, Bai X, Wang P, Zheng W, Xue HQ, Niu FL, Zhou XY (2013) Silk fiber-based microphotonic devices. Scientiarum Natura Universitatis Sunyatseni 52:6–10

    CAS  Google Scholar 

  • Jus S, Schroeder M, Guebitz GM, Heine E, Kokol V (2007) The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases. Enz. Microb Technol 40:1705–1711

    Article  CAS  Google Scholar 

  • Kang GD, Lee KH, Ki CS, Nahm JH, Park YH (2004a) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol Res 12:534–539

    Article  CAS  Google Scholar 

  • Kang GD, Lee KH, Ki CS, Park YH (2004b) Crosslinking reaction of phenolic side chains in silk fibroin by tyrosinase. Fibers Polymers 5:234–238

    Article  CAS  Google Scholar 

  • Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. A review. Microbiol 59:241–250

    CAS  Google Scholar 

  • Lantto R, Schönberg C, Buchert J, Heine E (2004) Effects of laccase-mediator combinations on wool. Textile Res J 74:713–717

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Arami M, Mazaheri F, Rahimi S (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18:146–151

    Article  CAS  Google Scholar 

  • McDevitt JP, Winkler J (2000) Method for enzymatic treatment of wool. U.S. WO 1999060200

  • Mehta K, Rao RU, Chandrashekar R (2002) Transglutaminase of the lower organisms. Across the link between life and death. Minerva Biotecnologica 14:129–134

    Google Scholar 

  • Middlebrook WR, Phillips H (1941) The application of enzymes to the production of shrinkage-resistant wool and mixture fabrics. J Soc Dye Colour 57:137–143

    Article  CAS  Google Scholar 

  • Montazer M, Dadashian F, Hemmatinejad N, Farhoudi K (2009) Treatment of wool with laccase and dyeing with madder. Appl Biochem Biotech 158:685–693

    Article  CAS  Google Scholar 

  • Montazer M, Lessan F, Pajootan E, Dadashian F (2011) Treatment of bleached wool with trans-glutaminases to enhance tensile strength, whiteness, and alkali resistance. Appl Biochem Biotech 165:748–759

    Article  CAS  Google Scholar 

  • Montazer M, Pajootan E, Lessan F (2012) Microbial trans-glutaminase enhances the physical and mechanical properties of depigmented wool. Eng Life Sci 12:216–222

    Article  CAS  Google Scholar 

  • Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Tech 9:204–210

    Article  CAS  Google Scholar 

  • Munteanu FD, Basto C, Gubitz G, Cavaco-Paulo A (2006) Staining of wool using the reaction products of ABTS oxidation by laccase: synergetic effects of ultrasound and cyclic voltammetry. Ultrason Sonochem 14:363–367

    Article  PubMed  Google Scholar 

  • Rippon JA (1992) The structure of wool. Society of dyers and colorists, Bradford, pp. 31–51

    Google Scholar 

  • Ryan S, Schnitzhofer W, Tzanov T, Cavaco-Paulo A, Gübitz G (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme Microb Tech 33:766–774

    Article  CAS  Google Scholar 

  • Sampaio S, Taddei P, Monti P, Buchert J, Freddi G (2005) Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J Biotechnol 116:21–33

    Article  CAS  PubMed  Google Scholar 

  • Schroeder M, Lenting HBM, Kandelbauer A, Silva CJSM, Cavaco-Paulo A, Gübitz G (2006) Restricting detergent protease action to surface of protein fibres by chemical modification. Appl Microbiol Biot 72:738–744

    Article  CAS  Google Scholar 

  • Shen J, Rushforth M, Cavaco-Paulo A, Gübitz G, Lenting H (2007) Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme Microb Tech 40:1656–1661

    Article  CAS  Google Scholar 

  • Shin H, Gubitz G, Cavaco-Paulo A (2001) “In situ” enzymatically prepared polymers for wool coloration. Macromol Mater Eng 286:691–694

    Article  CAS  Google Scholar 

  • Silva CJSM, Gübitz G, Cavaco-Paulo A (2006a) Optimisation of a serine protease coupling to Eudragit S-100 by experimental design techniques. J Chem Technol Biotechnol 81:8–16

    Article  CAS  Google Scholar 

  • Silva CJSM, Prabaharan M, Gübitz G, Cavaco-Paulo A (2005) Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme Microb Tech 36:917–922

    Article  CAS  Google Scholar 

  • Silva CJSM, Zhang Q, Shen J, Cavaco-Paulo A (2006b) Immobilization of proteases with a water soluble–insoluble reversible polymer for the treatment of wool. Enzyme Microb Tech 39:634–640

    Article  CAS  Google Scholar 

  • Simpson WS (2002) Chemical processes for enhanced appearance and performance. In: Simpson WS, Crawshaw GH (eds) Wool: science and technology. Woodhead Publishing Limited, Cambridge, pp. pp. 215–pp. 236

    Chapter  Google Scholar 

  • Sionkowska A, Planecka A (2011) The influence of UV radiation on silk fibroin. Polym Degrad Stab 96:523–528

    Article  CAS  Google Scholar 

  • Smith E, Schroeder M, Guebitz G, Shen JS (2010) Covalent bonding of protease to different sized enteric polymers and their potential use in wool processing. Enzyme Microb Tech 47:105–111

    Article  CAS  Google Scholar 

  • Smith E, Zhang Q, Shen J, Schroeder M, Silva CJSM (2008) Modification of Esperase by covalent bonding to Eudragit polymers L100 and S100 for wool fibre surface treatment. Biocatal Biotransfor 26:391–398

    Article  CAS  Google Scholar 

  • Strop P (2014) Versatility of microbial transglutaminase. Bioconjug Chem 25:855–862

    Article  CAS  PubMed  Google Scholar 

  • Sun SS, Xing TL, Tang RC (2013) Simultaneous coloration and functionalization of wool, silk, and nylon with the tyrosinase-catalyzed oxidation products of caffeic acid. Ind Eng Chem Res 52:8953–8961

    Article  CAS  Google Scholar 

  • Taddei P, Chiono V, Anghileri A, Vozzi G, Freddi G, Ciardelli G (2013) Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol Biosci 13:1492–1510

    Article  CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Vaithanomsat P, Kitpreechavanich V (2008) Sericin separation from silk degumming wastewater. Sep Purif Technol 59:129–133

    Article  CAS  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Progin Polym Sci 32:991–1007

    Article  CAS  Google Scholar 

  • Wang P, Wang Q, Fan XR, Yuan JG, Cui L (2010) A review of felt-proofing of wool with proteases. Dyeing Finishing 36:46–49

    CAS  Google Scholar 

  • Wang P, Yu ML, Cui L, Yuan JG, Wang Q, Fan XR (2014) Modification of Bombyx mori silk fabrics by tyrosinase-catalyzed grafting of chitosan. Eng Life Sci 14:211–217

    Article  Google Scholar 

  • Wu JH, Wang Z, Xu SY (2007) Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem 103:1255–1262

    Article  CAS  Google Scholar 

  • Wu JH, Wang Z, Xu SY (2008) Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochem 43:480–487

    Article  CAS  Google Scholar 

  • Xing R, Zheng AP, Wang F, Wang L, Yu YP, Jiang AH (2015) Functionality study of Na6PMo11FeO40 as a mushroom tyrosinase inhibitor. Food Chem 175:292–297

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Nomura M (1998) Fibrous article for contact with skin. Japan Patent 10-001872A

  • Yang Y, Li S (1993) Silk fabric non-formaldehyde crease-resistant finishing using citric acid. J Text I 84:638–644

    Article  CAS  Google Scholar 

  • Yi W, Dubois C, Yahiaoui S, Haudecoeur R, Belle C, Song H, Hardré R, Réglier M, Boumendjel A (2011) Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur J Med Chem 46:4330–4335

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biot 64:447–454

    Article  CAS  Google Scholar 

  • Zhang R, Cai Z, Zhang H (2010) Studies on the remedial effect of transglutaminase on protease anti-felting treated wool. J Text I 101:1015–1021

    Article  CAS  Google Scholar 

  • Zhang YQ, Tao ML, Shen WD, Zhou YZ, Ding Y, Ma Y, Zhou WL (2004) Immobilization of Lasparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25:3751–3759

  • Zhou W, Ji HJ, Wang Q, Wang P, Fan XR, Cai C (2011) Promoting effect of keratinase in wool anti-felting finishing with protease. J Textile Res 32:82–88

    Google Scholar 

  • Zou H, Zhang S (2007) Pretreatment technique of cool wool/ramie complex yarn. Journal of Wuhan University of Science and Engineering 20:24–28

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wang or Artur Cavaco-Paulo.

Additional information

Jiajia Fu and Jing Su contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 4 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Su, J., Wang, P. et al. Enzymatic processing of protein-based fibers. Appl Microbiol Biotechnol 99, 10387–10397 (2015). https://doi.org/10.1007/s00253-015-6970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6970-x

Keywords

Navigation