Applied Microbiology and Biotechnology

, Volume 99, Issue 23, pp 9883–9905

Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment

  • Zhiji Ding
  • Isabelle Bourven
  • Gilles Guibaud
  • Eric D. van Hullebusch
  • Antonio Panico
  • Francesco Pirozzi
  • Giovanni Esposito
Mini-Review

Abstract

This paper reviews the formation, structure, and stability of bioaggregates with an emphasis on the composition and distribution of extracellular polymeric substances (EPS) and their role in bioaggregation. Bioaggregation is ubiquitous in natural environment and is of great importance in biological wastewater treatment processes. It greatly influences the flocculability, settleability, and dewaterability for flocs and sludge retention and shear resistance for biofilms. The physico-chemical and microbial structures of bioaggregates are dependent on operational conditions as well as microbial diversity and spatial distribution. The formation of bioaggregates is mediated by the physico-chemical interactions as well as the microbial interactions such as EPS production and quorum sensing. EPS are composed of a mixture of macromolecules including proteins, polysaccharides, humic-like substances, and nucleic acids, which entrap the microbial cells in a three-dimensional matrix. The composition and physico-chemical characteristics of EPS have significant influence on the maintenance of the bioaggregate structure and the process performance of the wastewater treatment. However, the mechanisms of bioaggregation are still unclear and the conclusions on the role of EPS were mostly drawn from the established correlations and hypotheses. This paper expects to provide up-to-date knowledge on bioaggregation and insights for further studies and applications.

Keywords

EPS Granulation Flocculation Mechanism Protein Polysaccharide 

References

  1. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NSA, Wahab NA, Ujang Z, Shraim A, Bob MM (2015) Aerobic sludge granulation at high temperatures for domestic wastewater treatment. Bioresour technol 185:445–9PubMedCrossRefGoogle Scholar
  2. Adav SS, Lee DJ, Tay JH (2008a) Extracellular polymeric substances and structural stability of aerobic granule. Water Res 42(6–7):1644–1650PubMedCrossRefGoogle Scholar
  3. Adav SS, Lee DJ, Show KY, Tay JH (2008b) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423PubMedCrossRefGoogle Scholar
  4. Albertsen M, Stensballe A, Nielsen KL, Nielsen PH (2013) Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Sci Technol 67(7):1650–1656PubMedCrossRefGoogle Scholar
  5. Almstrand R, Persson F, Daims H, Ekenberg M, Christensson M, Wilen BM, Sorensson F, Hermansson M (2014) Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox. Int J Mol Sci 15(2):2191–2206PubMedCentralPubMedCrossRefGoogle Scholar
  6. Badireddy AR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM (2010) Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res 44(15):4505–4516PubMedCrossRefGoogle Scholar
  7. Barr JJ, Cook AE, Bond PL (2010) Granule formation mechanisms within an aerobic wastewater system for phosphorus removal. Appl Environ Microbiol 76(22):7588–7597PubMedCentralPubMedCrossRefGoogle Scholar
  8. Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35(7):1723–1729PubMedCrossRefGoogle Scholar
  9. Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33(10):2283–2290CrossRefGoogle Scholar
  10. Boelee NC, Janssen M, Temmink H, Taparaviciute L, Khiewwijit R, Janoska A, Buisman CJN, Wijffels RH (2014) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26(3):1439–1452CrossRefGoogle Scholar
  11. Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol 45(1–2):1–6CrossRefGoogle Scholar
  12. Bourven I, Simon S, Guibaud G (2013) Influence of extraction method on size exclusion chromatography fingerprints of EPS from wastewater sludges. Environ Technol (United Kingdom) 34(3):321–332Google Scholar
  13. Bourven I, Bachellerie G, Costa G, Guibaud G (2015) Evidence of glycoproteins and sulphated proteoglycan-like presence in extracellular polymeric substance from anaerobic granular sludge. Environ Technol 36(19):2428–2435PubMedCrossRefGoogle Scholar
  14. Caudan C, Filali A, Sperandio M, Girbal-Neuhauser E (2014) Multiple EPS interactions involved in the cohesion and structure of aerobic granules. Chemosphere 117:262–270PubMedCrossRefGoogle Scholar
  15. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia Coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chen MY, Lee DJ, Tay JH (2007) Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73(6):1463–1469PubMedCrossRefGoogle Scholar
  17. D’Abzac P, Bordas F, Van Hullebusch E, Lens PNL, Guibaud G (2010) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85(5):1589–1599PubMedCrossRefGoogle Scholar
  18. deBeer D, Oflaharty V, Thaveesri J, Lens P, Verstraete W (1996) Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Appl Microbiol Biotechnol 46(2):197–201CrossRefGoogle Scholar
  19. Ding Z, Caliendo L, Panico A, Esposito G, van Hullebusch ED, Pirozzi F (2015) An innovative approach to remove nitrogen from wastewater using a biological anaerobic ammonium oxidation (anammox) process. Chem Eng Trans 43:2245–2250Google Scholar
  20. Doelle HW (1994) Microbial process development. World Scientific, SingaporeGoogle Scholar
  21. Dolfing J, Griffioen A, Vanneerven ARW, Zevenhuizen L (1985) Chemical and bacteriological composition of granular methanogenic sludge. Can J Microbiol 31(8):744–750CrossRefGoogle Scholar
  22. Felfoeldi T, Jurecska L, Vajna B, Barkacs K, Makk J, Cebe G, Szabo A, Zaray G, Marialigeti K (2015) Texture and type of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment. Chem Eng J 264:824–834CrossRefGoogle Scholar
  23. Feng Q, Xue ZX, Chen LN, Li HY Effect of aeration induced shear stress on the settleability and activity of activated sludge. In: 3rd International conference on bioinformatics and biomedical engineering, iCBBE 2009, 2009.Google Scholar
  24. Feng L, Wu Z, Yu X (2013) Quorum sensing in water and wastewater treatment biofilms. J Environ Biol 34(2):437–444PubMedGoogle Scholar
  25. Ferrera I, Mas J, Taberna E, Sanz J, Sanchez O (2015) Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants. Biofouling 31(2):173–180PubMedCrossRefGoogle Scholar
  26. Frolund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758CrossRefGoogle Scholar
  27. Gao JF, Zhang Q, Wang JH, Wu XL, Wang SY, Peng YZ (2011) Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresour Technol 102(2):805–813PubMedCrossRefGoogle Scholar
  28. Garnier C, Görner T, Lartiges BS, Abdelouhab S, De Donato P (2005) Characterization of activated sludge exopolymers from various origins: a combined size-exclusion chromatography and infrared microscopy study. Water Res 39(13):3044–3054PubMedCrossRefGoogle Scholar
  29. Ge L, Wang H, Ma L, Deng H (2006) Extraction of extracellular polymeric substances (EPS) from four kinds of activated sludge. Fresenius Environ Bull 15(10):1252–1255Google Scholar
  30. Gonzalez-Gil G, Holliger C (2014) Aerobic granules: microbial landscape and architecture, stages, and practical implications. Appl Environ Microbiol 80(11):3433–3441PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gonzalez-Gil G, Lens PNL, Van Aelst A, Van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microbiol 67(8):3683–3692PubMedCentralPubMedCrossRefGoogle Scholar
  32. Gonzalez-Gil G, Sougrat R, Behzad AR, Lens PNL, Saikaly PE (2015) Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Microb Ecol 70(1):118–131PubMedCrossRefGoogle Scholar
  33. Gorner T, de Donato P, Ameil MH, Montarges-Pelletier E, Lartiges BS (2003) Activated sludge exopolymers: separation and identification using size exclusion chromatography and infrared micro-spectroscopy. Water Res 37(10):2388–2393PubMedCrossRefGoogle Scholar
  34. Gregory J (1997) The density of particle aggregates. Water Sci Technol 36(4):1–13CrossRefGoogle Scholar
  35. Guibaud G, van Hullebusch E, Bordas F (2006) Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere 64(11):1955–1962PubMedCrossRefGoogle Scholar
  36. Guibaud G, Bhatia D, d’Abzac P, Bourven I, Bordas F, van Hullebusch ED, Lens PNL (2012) Cd(II) and Pb(II) sorption by extracellular polymeric substances (EPS) extracted from anaerobic granular biofilms: evidence of a pH sorption-edge. J Taiwan Inst Chem E 43(3):444–449CrossRefGoogle Scholar
  37. Guo J, Peng Y, Wang S, Yang X, Yuan Z (2014) Filamentous and non-filamentous bulking of activated sludge encountered under nutrients limitation or deficiency conditions. Chem Eng J 255:453–461CrossRefGoogle Scholar
  38. Han Y, Liu J, Guo X, Li L (2012) Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresour Technol 124:252–258PubMedCrossRefGoogle Scholar
  39. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32(5):842–857PubMedCrossRefGoogle Scholar
  40. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloid and Surface B 14(1–4):105–119CrossRefGoogle Scholar
  41. Higgins MJ, Novak JT (1997) Characterization of exocellular protein and its role in bioflocculation. J Environ Eng-Asce 123(5):479–485CrossRefGoogle Scholar
  42. Higgins MJ, Sobeck DC, Owens SJ, Szabo LM (2004a) Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance - using alternatives to sodium-based chemicals. Water Environ Res 76(4):353–359PubMedCrossRefGoogle Scholar
  43. Higgins MJ, Tom LA, Sobeck DC (2004b) Case study I: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance - direct addition of divalent cations. Water Environ Res 76(4):344–352PubMedCrossRefGoogle Scholar
  44. Hoa PT, Nair L, Visvanathan C (2003) The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties. Water SA 29(4):437–442Google Scholar
  45. Hou X, Liu S, Zhang Z (2015) Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge. Water Res 75:51–62PubMedCrossRefGoogle Scholar
  46. Huang J, Wen Y, Cao A, Li H, Zhou Q (2012) The influence of temperature on bioflocculation and settling of activated sludge and their flocculation mechanisms involved. In: Iranpour R, Zhao J, Wang A, Yang FL, Li X (eds) Advances in environmental science and engineering, pts 1–6, vol 518–523, Adv Mater Res., pp 1817–1824Google Scholar
  47. Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38(6):1376–89PubMedCrossRefGoogle Scholar
  48. Ivanov V, Nejad SR, Yi S, Wang XH (2008) Physiological heterogeneity of suspended microbial aggregates. Water Sci Technol 58(12):2435–2441PubMedCrossRefGoogle Scholar
  49. Jiang W, Xia S, Duan L, Hermanowicz SW (2015) Biofilm architecture in a novel pressurized biofilm reactor. Biofouling 31(4):321–331PubMedCrossRefGoogle Scholar
  50. Johnson CP, Li XY, Logan BE (1996) Settling velocities of fractal aggregates. Environ Sci Technol 30(6):1911–1918CrossRefGoogle Scholar
  51. Kalyuzhnyi S, De Los Santos LE, Martinez JR (1998) Anaerobic treatment of raw and preclarified potato-maize wastewaters in a UASB reactor. Bioresour Technol 66(3):195–199CrossRefGoogle Scholar
  52. Karadag D, Koroglu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50(2):262–271CrossRefGoogle Scholar
  53. Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91(6):1045–1058CrossRefGoogle Scholar
  54. Kjelleberg S, Hermansson M, Marden P (1987) The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine-environment. Annu Rev Microbiol 41:25–49PubMedCrossRefGoogle Scholar
  55. Klausen MM, Thomsen TR, Nielsen JL, Mikkelsen LH, Nielsen PH (2004) Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiol Ecol 50(2):123–132PubMedCrossRefGoogle Scholar
  56. Langer S, Schropp D, Bengelsdorf FR, Othman M, Kazda M (2014) Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe 29:44–51PubMedCrossRefGoogle Scholar
  57. Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74(5):1517–1526PubMedCentralPubMedCrossRefGoogle Scholar
  58. Legrand V, Hourdet D, Audebert R, Snidaro D (1998) Deswelling and flocculation of gel networks: application to sludge dewatering. Water Res 32(12):3662–3672CrossRefGoogle Scholar
  59. Lemaire R, Webb RI, Yuan Z (2008) Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME Journal 2(5):528–541PubMedCrossRefGoogle Scholar
  60. Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41(5):1022–1030PubMedCrossRefGoogle Scholar
  61. Li ZH, Wang XC, Kuba T, Kusuda T (2011) Porous structure and spatial characteristics of aerobic granules. Int J Environ Pollut 45(1–3):25–35CrossRefGoogle Scholar
  62. Li H, Wen Y, Cao A, Huang J, Zhou Q, Somasundaran P (2012) The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms. Bioresour Technol 114:188–194PubMedCrossRefGoogle Scholar
  63. Li J, Ding LB, Cai A, Huang GX, Horn H (2014a) Aerobic sludge granulation in a full-scale sequencing batch reactor. BioMed Res Int. 2014:268789. doi:10.1155/2014/268789
  64. Li Y, Yang SF, Zhang JJ, Li XY (2014b) Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment. Water Sci Technol 70(3):548–554PubMedCrossRefGoogle Scholar
  65. Liang M, Wang T, Li Y, Yang P, Liu C, Li P, Zhao W (2013) Structural and fractal characteristics of biofilm attached on the surfaces of aquatic plants and gravels in the rivers and lakes reusing reclaimed wastewater. Environ Earth Sci 70(5):2319–2333CrossRefGoogle Scholar
  66. Liao BQ, Allen DG, Leppard GG, Droppo IG, Liss SN (2002) Interparticle interactions affecting the stability of sludge flocs. J Colloid Interface Sci 249(2):372–380PubMedCrossRefGoogle Scholar
  67. Lin Y, de Kreuk M, van Loosdrecht MCM, Adin A (2010) Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Res 44(11):3355–3364PubMedCrossRefGoogle Scholar
  68. Lin YM, Sharma PK, van Loosdrecht MCM (2013) The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Res 47(1):57–65PubMedCrossRefGoogle Scholar
  69. Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Environ Sci Technol 33(3):237–273CrossRefGoogle Scholar
  70. Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36(7):1653–1665PubMedCrossRefGoogle Scholar
  71. Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37(3):661–673PubMedCrossRefGoogle Scholar
  72. Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y (2004a) Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Technol 34(5):371–379CrossRefGoogle Scholar
  73. Liu YQ, Liu Y, Tay JH (2004b) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2):143–148PubMedCrossRefGoogle Scholar
  74. Liu XW, Sheng GP, Yu HQ (2009) Physicochemical characteristics of microbial granules. Biotechnol Adv 27(6):1061–1070PubMedCrossRefGoogle Scholar
  75. Liu L, Gao D-W, Zhang M, Fu Y (2010a) Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. J Hazard Mater 181(1–3):382–387PubMedCrossRefGoogle Scholar
  76. Liu L, Li WW, Sheng GP, Liu ZF, Zeng RJ, Liu JX, Yu HQ, Lee DJ (2010b) Microscale hydrodynamic analysis of aerobic granules in the mass transfer process. Environ Sci Technol 44(19):7555–7560PubMedCrossRefGoogle Scholar
  77. Liu XM, Sheng GP, Luo HW, Zhang F, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ (2010c) Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol 44(11):4355–4360PubMedCrossRefGoogle Scholar
  78. Liu YQ, Moy B, Kong YH, Tay JH (2010d) Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb Technol 46(6):520–525PubMedCrossRefGoogle Scholar
  79. Liu F, Zeng P, Song Y, Song C, Zhao L (2011) Short-term storage and subsequent reactivation of aerobic granules cultivated with phenol emissions. In: Hu J (ed) Advances in biomedical engineering. Advances in Biomedical Engineering. Proceedings of 2011 International Conference on Agricultural and Biosystems Engineering, pp 309–312Google Scholar
  80. Lv J, Wang Y, Zhong C, Li Y, Hao W, Zhu J (2014a) The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge. Bioresour Technol 151:291–296PubMedCrossRefGoogle Scholar
  81. Lv Y, Wan C, Lee DJ, Liu X, Tay JH (2014b) Microbial communities of aerobic granules: granulation mechanisms. Bioresour Technol 169:344–351PubMedCrossRefGoogle Scholar
  82. Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4(1):18–28PubMedCrossRefGoogle Scholar
  83. Mahendran B, Lishman L, Liss SN (2012) Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems. Water Res 46(16):5085–5101PubMedCrossRefGoogle Scholar
  84. Maksimova YG (2014) Microbial biofilms in biotechnological processes. Appl Biochem Microbiol 50(8):750–760CrossRefGoogle Scholar
  85. Martín-Cereceda M, Jorand F, Guinea A, Block JC (2001) Characterization of extracellular polymeric substances in rotating biological contactors and activated sludge flocs. Environ Technol 22(8):951–959PubMedCrossRefGoogle Scholar
  86. Mascarenhas T, Mikkelsen LH, Nielsen PH (2004) Effects of chlorination on the adhesion strength and deflocculation of activated sludge flocs. Water Environ Res 76(4):327–333PubMedCrossRefGoogle Scholar
  87. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26(1):3–16PubMedCrossRefGoogle Scholar
  88. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microb 71(2):1051–1057CrossRefGoogle Scholar
  89. Metcalf L, Eddy HP, Tchobanoglous G (2010) Wastewater engineering: treatment, disposal, and reuse. McGraw-Hill, New YorkGoogle Scholar
  90. Metivier R, Bourven I, Labanowski J, Guibaud G (2013) Interaction of erythromycin ethylsuccinate and acetaminophen with protein fraction of extracellular polymeric substances (EPS) from various bacterial aggregates. Environ Sci Pollut R 20(10):7275–7285CrossRefGoogle Scholar
  91. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, HannoverGoogle Scholar
  92. Miksch K, Konczak B (2012) Distribution of extracellular polymeric substances and their role in aerobic granule formation. Chem Process Eng -Inzynieria Chemiczna I Procesowa 33(4):679–688Google Scholar
  93. Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated-sludge - a pilot-study of the aerobic upflow sludge blanket process in municipal sewage-treatment. Water Sci Technol 23(4–6):981–990Google Scholar
  94. Morgan-Sagastume F, Allen DG (2005) Activated sludge deflocculation under temperature upshifts from 30 to 45°C. Water Res 39(6):1061–1074PubMedCrossRefGoogle Scholar
  95. Mu Y, Yu HQ, Wang G (2006) Permeabilities of anaerobic CH4-producing granules. Water Res 40(9):1811–1815PubMedCrossRefGoogle Scholar
  96. Mu Y, Ren TT, Yu HQ (2008) Drag coefficient of porous and permeable microbial granules. Environ Sci Technol 42(5):1718–1723PubMedCrossRefGoogle Scholar
  97. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16(3):177–183CrossRefGoogle Scholar
  98. Ni BJ, Yu HQ (2010) Mathematical modeling of aerobic granular sludge: a review. Biotechnol Adv 28(6):895–909PubMedCrossRefGoogle Scholar
  99. Ni S-Q, Zhang J (2013) Anaerobic ammonium oxidation: from laboratory to full-scale application. BioMed research international 2013:469360–469360PubMedCentralPubMedGoogle Scholar
  100. Ni BJ, Hu BL, Fang F, Xie WM, Kartal B, Liu XW, Sheng GP, Jetten M, Zheng P, Yu HQ (2010) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 76(8):2652–2656PubMedCentralPubMedCrossRefGoogle Scholar
  101. Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33PubMedCrossRefGoogle Scholar
  102. Nielsen P, Jahn A (1999) Extraction of EPS. In: Neu T, Flemming HC (eds) Wingender J. Microbial extracellular polymeric substances, Springer Berlin Heidelberg, pp 49–72Google Scholar
  103. Nielsen PH, Keiding K (1998) Disintegration of activated sludge flocs in presence of sulfide. Water Res 32(2):313–320CrossRefGoogle Scholar
  104. Nielsen PH, Frølund B, Keiding K (1996) Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl Microbiol Biotechnol 44(6):823–830PubMedCrossRefGoogle Scholar
  105. Nielsen PH, Thomsen TR, Nielsen JL (2003) Bacterial composition of activated sludge - importance for floc and sludge properties. Water Sci Technol 49(10):51–58Google Scholar
  106. Ning YF, Chen YP, Shen Y, Zeng N, Liu SY, Guo JS, Fang F (2014) A new approach for estimating aerobic-anaerobic biofilm structure in wastewater treatment via dissolved oxygen microdistribution. Chem Eng J 255:171–177CrossRefGoogle Scholar
  107. Olofsson AC, Zita A, Hermansson M (1998) Floc stability and adhesion of green-fluorescent-protein-marked bacteria to flocs in activated sludge. Microbiology-Uk 144:519–528CrossRefGoogle Scholar
  108. Park C, Novak JT (2009) Characterization of lectins and bacterial adhesins in activated sludge flocs. Water Environ Res 81(8):755–764PubMedCrossRefGoogle Scholar
  109. Pellicer-Nàcher C, Domingo-Félez C, Mutlu AG, Smets BF (2013) Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass. Water Res 47(15):5564–5574PubMedCrossRefGoogle Scholar
  110. Peng DC, Bernet N, Delgenes JP, Moletta R (1999) Aerobic granular sludge–a case report. Water Res 33(3):890–893CrossRefGoogle Scholar
  111. Peng G, Ye F, Li Y (2012) Investigation of extracellular polymer substances (EPS) and physicochemical properties of activated sludge from different municipal and industrial wastewater treatment plants. Environ Technol 33(8):857–863PubMedCrossRefGoogle Scholar
  112. Pradhan N, Dipasquale L, d’Ippolito G, Panico A, Lens PNL, Esposito G, Fontana A (2015) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Int J Mol Sci 16:12578–12600PubMedCentralPubMedCrossRefGoogle Scholar
  113. Raszka A, Chorvatova M, Wanner J (2006) The role and significance of extracellular polymers in activated sludge. Part I: literature review. Acta Hydrochim Hydrobiol 34(5):411–424CrossRefGoogle Scholar
  114. Ren TT, Yu HQ, Li XY (2010) The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation. Appl Microbiol Biotechnol 88(3):789–797PubMedCrossRefGoogle Scholar
  115. Rittmann BE, Manem JA (1992) Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnol Bioeng 39(9):914–922PubMedCrossRefGoogle Scholar
  116. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1502(1):16–30CrossRefGoogle Scholar
  117. Seviour T, Pijuan M, Nicholson T, Keller J, Yuan Z (2009a) Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Res 43(18):4469–4478PubMedCrossRefGoogle Scholar
  118. Seviour T, Pijuan M, Nicholson T, Keller J, Yuan Z (2009b) Understanding the properties of aerobic sludge granules as hydrogels. Biotechnol Bioeng 102(5):1483–1493PubMedCrossRefGoogle Scholar
  119. Seviour T, Donose BC, Pijuan M, Yuan Z (2010a) Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environ Sci Technol 44(12):4729–4734PubMedCrossRefGoogle Scholar
  120. Seviour T, Lambert LK, Pijuan M, Yuan Z (2010b) Structural determination of a key exopolysaccharide in mixed culture aerobic sludge granules using NMR spectroscopy. Environ Sci Technol 44(23):8964–8970PubMedCrossRefGoogle Scholar
  121. Seviour TW, Lambert LK, Pijuan M, Yuan Z (2011) Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus "Competibacter phosphatis". Appl Microbiol Biotechnol 92(6):1297–1305PubMedCrossRefGoogle Scholar
  122. Seviour T, Yuan Z, van Loosdrecht MCM, Lin Y (2012) Aerobic sludge granulation: a tale of two polysaccharides? Water Res 46(15):4803–4813PubMedCrossRefGoogle Scholar
  123. Sheng GP, Yu HQ, Li XY (2006) Stability of sludge flocs under shear conditions: roles of extracellular polymeric substances (EPS). Biotechnol Bioeng 93(6):1095–1102PubMedCrossRefGoogle Scholar
  124. Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894PubMedCrossRefGoogle Scholar
  125. Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46(4):1995–2005PubMedCrossRefGoogle Scholar
  126. Snidaro D, Zartarian F, Jorand F, Bottero JY, Block JC, Manem J (1997) Characterization of activated sludge flocs structure. Water Sci Technol 36(4):313–320CrossRefGoogle Scholar
  127. Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36(3):527–538PubMedCrossRefGoogle Scholar
  128. Sponza DT (2002) Extracellular polymer substances and physicochemical properties of flocs in steady- and unsteady-state activated sludge systems. Process Biochem 37(9):983–998CrossRefGoogle Scholar
  129. Su KZ, Yu HQ (2006a) A generalized model for aerobic granule-based sequencing batch reactor. 1. Model development. Environ Sci Technol 40(15):4703–4708PubMedCrossRefGoogle Scholar
  130. Su KZ, Yu HQ (2006b) A generalized model for aerobic granule-based sequencing batch reactor. 2. Parametric sensitivity and model verification. Environ Sci Technol 40(15):4709–4713PubMedCrossRefGoogle Scholar
  131. Szalai AJ, VanCott J, McGhee JR, Volanakis JE, Benjamin WH (2000) Human C-reactive protein is protective against fatal Salmonella enterica serovar Typhimurium infection in transgenic mice. Infect Immun 68(10):5652–5656Google Scholar
  132. Szilveszter S, Raduly B, Abraham B, Lanyi S (2013) In situ imaging of biopolymers and extracellular enzymes in activated sludge flocs of a municipal wastewater treatment plant. J Chem Technol Biotechnol 88(7):1295–1304CrossRefGoogle Scholar
  133. Tay JH, Xu HL, Teo KC (2000) Molecular mechanism of granulation. I: H+ trans location-dehydration theory. J Environ Eng-Asce 126(5):403–410CrossRefGoogle Scholar
  134. Tay JH, Ivanov V, Pan S, Tay STL (2002) Specific layers in aerobically grown microbial granules. Lett Appl Microbiol 34(4):254–257PubMedCrossRefGoogle Scholar
  135. Teo KC, Xu HL, Tay JH (2000) Molecular mechanism of granulation. II: proton translocating activity. J Environ Eng-Asce 126(5):411–418CrossRefGoogle Scholar
  136. Tian Y, Zheng L, Sun DZ (2006) Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest. J Environ Sci-China 18(3):420–427PubMedGoogle Scholar
  137. Vazquez-Padin J, Mosquera-Corral A, Luis Campos J, Mendez R, Revsbech NP (2010) Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Res 44(15):4359–4370PubMedCrossRefGoogle Scholar
  138. Vlaeminck SE, Terada A, Smets BF, De Clippeleir H, Schaubroeck T, Bolca S, Demeestere L, Mast J, Boon N, Carballa M, Verstraete W (2010) Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl Environ Microbiol 76(3):900–909PubMedCentralPubMedCrossRefGoogle Scholar
  139. Volcke EIP, Picioreanu C, De Baets B, van Loosdrecht MCM (2010) Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environ Technol 31(11):1271–1280PubMedCrossRefGoogle Scholar
  140. von Sperling M (2007) Basic principles of wastewater treatment. IWA, LondonGoogle Scholar
  141. Wan J, Mozo I, Filali A, Line A, Bessiere Y, Sperandio M (2011) Evolution of bioaggregate strength during aerobic granular sludge formation. Biochem Eng J 58–59:69–78CrossRefGoogle Scholar
  142. Wan C, Lee DJ, Yang X, Wang Y, Wang X, Liu X (2015) Calcium precipitate induced aerobic granulation. Bioresour Technol 176:32–37PubMedCrossRefGoogle Scholar
  143. Wang ZW, Liu Y, Tay JH (2005) Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol 69(4):469–473PubMedCrossRefGoogle Scholar
  144. Wang HL, Yu GL, Liu GS, Pan F (2006) A new way to cultivate aerobic granules in the process of papermaking wastewater treatment. Biochem Eng J 28(1):99–103CrossRefGoogle Scholar
  145. Wang BB, Chang Q, Peng DC, Hou YP, Li HJ, Pei LY (2014a) A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level. Water Res 64:53–60PubMedCrossRefGoogle Scholar
  146. Wang L, Zheng P, Xing Y, Li W, Yang J, Abbas G, Liu S, He Z, Zhang J, Zhang H, Lu H (2014b) Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresour Technol 157:240–246PubMedCrossRefGoogle Scholar
  147. Weissbrodt DG, Neu TR, Kuhlicke U, Rappaz Y, Holliger C (2013) Assessment of bacterial and structural dynamics in aerobic granular biofilms. Frontiers in Microbiology 4:175. doi:10.3389/fmicb.2013.00175
  148. Wilén BM, Nielsen JL, Keiding K, Nielsen PH (2000) Influence of microbial activity on the stability of activated sludge flocs. Colloid Surface B 18(2):145–156CrossRefGoogle Scholar
  149. Wilén BM, Jin B, Lant P (2003) The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res 37(9):2127–2139PubMedCrossRefGoogle Scholar
  150. Wilén BM, Onuki M, Hermansson M, Lumley D, Mino T (2008) Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res 42(8–9):2300–2308PubMedCrossRefGoogle Scholar
  151. Wilén BM, Lumley D, Mattsson A, Mino T (2010) Dynamics in flocculation and settling properties studied at a full-scale activated sludge plant. Water Environ Res 82(2):155–168PubMedCrossRefGoogle Scholar
  152. Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191Google Scholar
  153. Wingender J, Neu TR, Flemming HC (1999) Microbial extracellular polymeric substances: characterization, structure, and function. Springer Berlin HeidelbergGoogle Scholar
  154. Yang SF, Li XY (2009) Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochem 44(1):91–96CrossRefGoogle Scholar
  155. Yin C, Meng F, Chen GH (2015) Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria. Water Res 68:740–749PubMedCrossRefGoogle Scholar
  156. Yu G-H, He PJ, Shao LM, Lee DJ (2007) Enzyme activities in activated sludge flocs. Appl Microbiol Biotechnol 77(3):605–612PubMedCrossRefGoogle Scholar
  157. Yu G-H, He PJ, Shao LM, He P-P (2008) Stratification structure of sludge flocs with implications to dewaterability. Environ Sci Technol 42(21):7944–7949PubMedCrossRefGoogle Scholar
  158. Yu G-H, He PJ, Shao LM (2009) Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability. Bioresour Technol 100(13):3193–3198PubMedCrossRefGoogle Scholar
  159. Yuan DQ, Wang YL, Feng J (2014) Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge. Water Res 56:56–65PubMedCrossRefGoogle Scholar
  160. Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb Technol 41(5):551–557CrossRefGoogle Scholar
  161. Zhang ZJ, Wu WW, Wang JL (2010) Characteristics of autotrophic nitrifying granular sludge in sequencing batch reactor. Huanjing Kexue 31(5):1257–1262PubMedGoogle Scholar
  162. Zhang SH, Yu X, Guo F, Wu ZY (2011) Effect of interspecies quorum sensing on the formation of aerobic granular sludge. Water Sci Technol 64(6):1284–1290PubMedCrossRefGoogle Scholar
  163. Zhang L, Hendrickx TLG, Kampman C, Temmink H, Zeeman G (2013) Co-digestion to support low temperature anaerobic pretreatment of municipal sewage in a UASB-digester. Bioresour Technol 148:560–566PubMedCrossRefGoogle Scholar
  164. Zhang P, Fang F, Chen YP, Shen Y, Zhang W, Yang JX, Li C, Guo JS, Liu SY, Huang Y, Li S, Gao X, Yan P (2014) Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation. Chemosphere 117:59–65PubMedCrossRefGoogle Scholar
  165. Zhang P, Guo JS, Shen Y, Yan P, Chen YP, Wang H, Yang JX, Fang F, Li C (2015a) Microbial communities, extracellular proteomics and polysaccharides: a comparative investigation on biofilm and suspended sludge. Bioresour Technol 190:21–28PubMedCrossRefGoogle Scholar
  166. Zhang P, Shen Y, Guo JS, Li C, Wang H, Chen YP, Yan P, Yang JX, Fang F (2015b) Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics. Scientific Reports 5:12041PubMedCentralPubMedCrossRefGoogle Scholar
  167. Zheng D, Angenent LT, Raskin L (2006) Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes. Biotechnol Bioeng 94(3):458–472PubMedCrossRefGoogle Scholar
  168. Zhou D, Niu S, Xiong Y, Yang Y, Dong S (2014) Microbial selection pressure is not a prerequisite for granulation: dynamic granulation and microbial community study in a complete mixing bioreactor. Bioresour Technol 161:102–108PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.Groupement de Recherche Eau Sol EnvironnementUniversité de LimogesLimogesFrance
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508)Université Paris-EstParisFrance
  4. 4.Telematic University PegasoNaplesItaly
  5. 5.Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly

Personalised recommendations