Skip to main content
Log in

Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The current diminishing returns in finding useful antibiotics and the occurrence of drug-resistant bacteria call for the need to find new antibiotics. Moreover, the whole genome sequencing revealed that the biosynthetic potential of Streptomyces, which has produced the highest numbers of approved and clinical-trial drugs, has been greatly underestimated. Considering the known gene editing toolkits were arduous and inefficient, novel and efficient gene editing system are desirable. Here, we developed an engineered CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein) combined with the counterselection system CodA(sm), the D314A mutant of cytosine deaminase, to rapidly and effectively edit Streptomyces genomes. In-frame deletion of the actinorhodin polyketide chain length factor gene actI-ORF2 was created in Streptomyces coelicolor M145 as an illustration. This CRISPR/Cas9-CodA(sm) combined system strikingly increased the frequency of unmarked mutants and shortened the time required to generate them. We foresee the system becoming a routine laboratory technique for genome editing to exploit the great biosynthetic potential of Streptomyces and perhaps for other medically and economically important actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  CAS  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P (2002) Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 68:2359–2367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol [Epub ahead of print]

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng ZX, Kieser T, Hopwood DA (1988) “Strong incompatibility” between derivatives of the Streptomyces multi-copy plasmid pIJ101. Mol Gen Genet 214:286–294

    Article  CAS  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  • Dubeau MP, Ghinet MG, Jacques PE, Clermont N, Beaulieu C, Brzezinski R (2009) Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol 75:1211–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS (2005) Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304–312

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z (2011) Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin (Shanghai) 43:630–639

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231–243

    Article  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Kaster KR, Burgett SG, Rao RN,.Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11: 6895–6911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185:223–228

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J Bacteriol 189:3306–3311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muth G, Nußbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348

    Article  CAS  Google Scholar 

  • Muth G, Wohlleben W, Puhler A (1988) The minimal replicon of the Streptomyces ghanaensis plasmid pSG5 identified by subcloning and Tn5 mutagenesis. Mol Gen Genet 211:424–429

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    Article  CAS  PubMed  Google Scholar 

  • Oliynyk M, Stark CB, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiology 49:1179–1190

    Article  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu L-P, Yang Z, Mao D, Sun L, Wu Q, Ji J-Y, Xi J, Mohr SE, Xu J, Perrimon N, Ni J-Q (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 110:19012–19017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498

    CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in Streptomyces. Appl Microbiol Biotechnol 87:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Smithies O (2001) Forty years with homologous recombination. Nat Med 7:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, He X, Liang J, Zhou X, Deng Z (2009) Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82:303–310

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Hong H, Samborskyy M, Mironenko T, Leadlay PF, Haydock SF (2006) Organization of the biosynthetic gene cluster in Streptomyces sp. DSM 4137 for the novel neuroprotectant polyketide meridamycin. Microbiology 152:3507–3515

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol [Epub ahead of print]

  • Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d’Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:1686–1689

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182

    Article  CAS  Google Scholar 

  • Zhang X, Chen W, Zhang Y, Jiang L, Chen Z, Wen Y, Li J (2012) Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis. J Ind Microbiol Biotechnol 39:917–925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from National Basic Research Program of China (973 Program), Research Fund for the Doctoral Program of Higher Education of China, and Program for Collaborative Innovative in Wuhan University School of Medicine. We thank Dr. Ryszard Brzezinski at Universite´ de Sherbrooke in Canada for the gift of pMG303M containing codA(sm). We are grateful to associate Prof. Changming Zhao for his help in LC-ESI-HRMS detection of actinorhodin and Dr. Tobias Kieser for his critical reading of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Sun.

Electronic supplementary material

ESM 1

(PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Wen, S., Xu, W. et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99, 10575–10585 (2015). https://doi.org/10.1007/s00253-015-6931-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6931-4

Keywords

Navigation