Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 24, pp 10815–10827 | Cite as

Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula

  • Hugo E. de Jesus
  • Raquel S. Peixoto
  • Juliano C. Cury
  • Jan D. van Elsas
  • Alexandre S. Rosado
Environmental biotechnology

Abstract

Many areas on the Antarctic continent already suffer from the direct and indirect influences of human activities. The main cause of contamination is petroleum hydrocarbons because this compound is used as a source of energy at the many research stations around the continent. Thus, the current study aims to evaluate treatments for bioremediation (biostimulation, bioaugmentation, and bioaugmentation + biostimulation) using soils from around the Brazilian Antarctic Station “Comandante Ferraz” (EACF), King George Island, Antarctic Peninsula. The experiment lasted for 45 days, and at the end of this period, chemical and molecular analyses were performed. Those analyses included the quantification of carbon and nitrogen, denaturing gradient gel electrophoresis (DGGE) analysis (with gradient denaturation), real-time PCR, and quantification of total hydrocarbons and polyaromatics. Molecular tests evaluated changes in the profile and quantity of the rrs genes of archaea and bacteria and also the alkB gene. The influence of the treatments tested was directly related to the type of soil used. The work confirmed that despite the extreme conditions found in Antarctic soils, the bacterial strains degraded hydrocarbons and bioremediation treatments directly influenced the microbial communities present in these soils even in short periods. Although the majority of the previous studies demonstrate that the addition of fertilizer seems to be most effective at promoting bioremediation, our results show that for some conditions, autochthonous bioaugmentation (ABA) treatment is indicated. This work highlights the importance of understanding the processes of recovery of contaminated environments in polar regions because time is crucial to the soil recovery and to choosing the appropriate treatment.

Keywords

Soil Bioremediation Antarctica Diesel 

Notes

Acknowledgments

This work integrates the National Institute of Science and Technology Antarctic Environmental Research (INCT-APA) that receives scientific and financial support from the National Council for Research and Development (CNPq process: no. 574018/2008-5) and Carlos Chagas Research Support Foundation of the State of Rio de Janeiro (FAPERJ). The authors also acknowledge the support of the Brazilian Ministries of Science, Technology and Innovation (MCTI), of Environment (MMA) and Inter-Ministry Commission for Sea Resources (CIRM).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2015_6919_MOESM1_ESM.pdf (741 kb)
ESM 1 (PDF 740 kb).

References

  1. Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1274. doi: 10.1021/es0305149 CrossRefPubMedGoogle Scholar
  2. Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54. doi: 10.1007/s00248-001-1019-3 CrossRefPubMedGoogle Scholar
  3. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226. doi: 10.1016/j.scitotenv.2008.06.062 CrossRefPubMedGoogle Scholar
  4. Bargagli R, Nelli L, Ancora S, Focardi S (1996) Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol 16:513–520. doi: 10.1007/BF02329071 CrossRefGoogle Scholar
  5. Bargagli R, Monaci F, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76. doi: 10.3354/meps169065 CrossRefGoogle Scholar
  6. Brown EJ, Resnick SM, Rebstock C, Luong HV, Lindstrom J (1991) UAF radiorespirometric protocol for assessing hydrocarbon mineralization potential in environmental samples. Biodegradation 2:121–127. doi: 10.1007/BF00114602 CrossRefPubMedGoogle Scholar
  7. Chénier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilms. Appl Environ Microbiol 69:5170–5177. doi: 10.1128/AEM.69.9.5170 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Clegg CD, Lovell RDL, Hobbs PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol Ecol 43:263–270. doi: 10.1111/j.1574-6941.2003.tb01066.x CrossRefPubMedGoogle Scholar
  9. Corsolini S (2009) Industrial contaminants in Antarctic biota. J Chromatogr A 1216:598–612. doi: 10.1016/j.chroma.2008.08.012 CrossRefPubMedGoogle Scholar
  10. Cury JC, Jurelevicius DA, Villela HDM, Jesus HE, Peixoto RS, Schaefer CEGR, Bícego MC, Seldin L, Rosado AS (2015) Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarct Sci 27:263–273. doi: 10.1017/S0954102014000728 CrossRefGoogle Scholar
  11. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689. doi: 10.1073/pnas.89.12.5685 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32:14. doi: 10.1016/S0165-232X(01)00020-9 CrossRefGoogle Scholar
  13. Fukuhara Y, Horii S, Matsuno T, Matsumiya Y, Mukai M, Kubo M (2013) Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation. Appl Biochem Biotechnol. doi: 10.1007/s12010-013-0170-x PubMedGoogle Scholar
  14. Gojgic-Cvijovic GD, Milic JS, Solevic TM, Beskoski VP, Ilic MV, Djokic LS, Narancic TM, Vrvic MM (2011) Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation 23:1–14. doi: 10.1007/s10532-011-9481-1 CrossRefPubMedGoogle Scholar
  15. Guibert L, Loviso C (2012) Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb Ecol 64:605–616. doi: 10.1007/s00248-012-0051-9 CrossRefPubMedGoogle Scholar
  16. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643. doi: 10.1016/j.biortech.2007.04.047 CrossRefPubMedGoogle Scholar
  17. Jasmine J, Mukherji S (2014) Environmental science evaluation of bioaugmentation and biostimulation effects on the treatment of refinery oily sludge using 2 n full factorial design. Environ Sci Process Impacts 16:1889–1896. doi: 10.1039/C4EM00116H CrossRefPubMedGoogle Scholar
  18. Lane DJ (1991) Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) Journal of basic microbiology. Wiley, Chichester, pp 115–175Google Scholar
  19. Louati H, Said O, Ben SA, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E (2014) Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. Environ Sci Pollut Res Int 21:3670–3679. doi: 10.1007/s11356-013-2330-5 CrossRefPubMedGoogle Scholar
  20. Luna GM, Stumm K, Pusceddu A, Danovaro R (2009) Archaeal diversity in deep-sea sediments estimated by means of different terminal-restriction fragment length polymorphisms (T-RFLP) protocols. Curr Microbiol 59:356–361. doi: 10.1007/s00284-009-9445-4 CrossRefPubMedGoogle Scholar
  21. Martínez-Rosales C, Castro-Sowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res. doi: 10.3402/polar.v30i0.7123 Google Scholar
  22. McDonald SJ, Kennicutt MC, Brooks JM (1992) Evidence of polycyclic aromatic hydrocarbon (PAH) exposure in fish from the Antarctic Peninsula. Mar Pollut Bull 25:313–317. doi: 10.1016/0025-326X(92)90688-3 CrossRefGoogle Scholar
  23. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedCentralPubMedGoogle Scholar
  24. Nübel U, Garcia-pichel F, Kühl M, Ku M, Muyzer G (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl Environ Microbiol 65:422–430PubMedCentralPubMedGoogle Scholar
  25. Peixoto R, Chaer GM, Carmo FL, Araujo FV, Paes JE, Volpon A, Santiago GA, Rosado AS (2011) Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie van Leeuwenhoek 99:341–354. doi: 10.1007/s10482-010-9499-0 CrossRefPubMedGoogle Scholar
  26. Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microbiol Cell Fact 7:5. doi: 10.1186/1475-2859-7-5 CrossRefGoogle Scholar
  27. Roling WFM, de Brito IRC, Swannell RPJ, Head IM (2004) Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl Environ Microbiol 70:2614–2620. doi: 10.1128/AEM.70.5.2614 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ruberto L, Vazquez SC, Cormack WPM (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegrad 52:115–125. doi: 10.1016/S0964-8305(03)00048-9 CrossRefGoogle Scholar
  29. Ruberto L, Vazquez S, Mac WP (2008) Bacteriology of extremely cold soils exposed to hydrocarbon pollution. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, 13rd edn. Springer, Berlin, pp 247–274Google Scholar
  30. Ruberto L, Dias R, Lo Balbo A, Vazquez SC, Hernandez EAM, Cormack WP (2009) Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol 106:1101–1110CrossRefPubMedGoogle Scholar
  31. Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS (2010) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350. doi: 10.1007/s11270-010-0536-4 CrossRefGoogle Scholar
  32. Tarnocai C, Campbell IB (2002) Soils of the polar regions. In: Dekker M (ed) Encyclopedia of soil science, 2nd edn. Lal R, New York, pp 1018–1021Google Scholar
  33. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338. doi: 10.1111/j.1550-7408.1999.tb04612.x CrossRefPubMedGoogle Scholar
  34. Van Dorst J, Siciliano S, Winsley T, Snape I, Ferrari B (2014) Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol. doi: 10.1128/AEM.03939-13 PubMedCentralPubMedGoogle Scholar
  35. Van Elsas J, Dijkstra A, Govaert J, Vanveen J (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160. doi: 10.1016/0378-1097(86)90046-7 CrossRefGoogle Scholar
  36. Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Balbo A, Lo BR, Lalucat J, Cormack WM (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb Ecol 57:598–610. doi: 10.1007/s00248-008-9420-9 CrossRefPubMedGoogle Scholar
  37. Versalovic J, Schneider M, De Bruijn F, Lupski J (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  38. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  39. Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401. doi: 10.1016/j.jhazmat.2010.07.038 CrossRefPubMedGoogle Scholar
  40. Yang S-Z, Jin H-J, Wei Z, He R-X, Ji Y-J, Li X-M, Yu S-P (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19:371–381. doi: 10.1016/S1002-0160(09)60128-4 CrossRefGoogle Scholar
  41. Yu Z, García-González R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893. doi: 10.1128/AEM.00684-07 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Zanaroli G, Di Toro S, Todaro D, Varese GC, Bertolotto A, Fava F (2010) Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microbiol Cell Fact 9:10. doi: 10.1186/1475-2859-9-10 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hugo E. de Jesus
    • 1
  • Raquel S. Peixoto
    • 1
  • Juliano C. Cury
    • 2
  • Jan D. van Elsas
    • 3
  • Alexandre S. Rosado
    • 1
  1. 1.LEMM—Laboratório de Ecologia Microbiana Molecular–Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Molecular Microbiology LaboratoryCSL/Universidade Federal de São João Del ReiSete LagoasBrazil
  3. 3.Microbial Ecology DepartmentUniversity of GroningenGroningenNetherlands

Personalised recommendations