Skip to main content
Log in

Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose using a nisin-controlled gene expression system in Lactococcus lactis. These polymers have potential for production of biodegradable gels, fibers, and films. We optimized production of DsrI using several different background vectors, signal peptides, strains, induction conditions, and bioreactor parameters to increase extracellular accumulation. Optimal production of the enzyme utilized a high-copy plasmid, pMSP3535H3, which contains a nisin immunity gene, L. lactis LM0230, and bioreactors maintained at pH 6.0 to stabilize the enzyme. We were able to significantly improve growth using the lactic acid inhibitor heme and by continuous removal of lactic acid with anion exchange resins, but enzyme production was less than the controls. The recombinant enzyme under optimized conditions accumulated in the culture medium to approximately 380 mg/L, which was over 150-fold higher compared to the native L. mesenteroides strain. Methods are also included for purification of DsrI utilizing the glucan-binding domain of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arioli S, Zambelli D, Guglielmetti S, De Noni I, Pedersen MB, Pedersen PD, Dal Bello F, Mora D (2013) Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl Environ Microbiol 79(1):376–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berlec A, Tompa G, Slapar N, Fonovic UP, Rogelj I, Strukelj B (2008) Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Ju LK (2002) Coupled lactic acid fermentation and adsorption. Appl Microbiol Biotechnol 59(2–3):170–174

    Article  CAS  PubMed  Google Scholar 

  • Côté GL, Dunlap CA (2003) Alternansucrase acceptor reactions with methyl hexopyranosides. Carbohydr Res 338(19):1961–1967

  • Côté GL, Skory CD (2012) Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Appl Microbiol Biotechnol 93(6):2387–2394

    Article  PubMed  Google Scholar 

  • Côté GL, Skory CD (2014) Effects of mutations at threonine-654 on the insoluble glucan synthesized by Leuconostoc mesenteroides NRRL B-1118 glucansucrase. Appl Microbiol Biotechnol 98(15):6651–6658

    Article  PubMed  Google Scholar 

  • Côté GL, Skory CD (2015) Water-insoluble glucans from sucrose via glucansucrases. Factors influencing structures and yields. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: biobased materials and biocatalysis III. ACS Symposium Series, Washington, DC, 101–112 (in press)

  • Cote GL, Skory CD, Unser SM, Rich JO (2013) The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl Microbiol Biotechnol 97(16):7265–7273

    Article  CAS  PubMed  Google Scholar 

  • Côté GL, Cormier RS, Vermillion KE (2014) Glucansucrase acceptor reactions with D-mannose. Carbohydr Res 387:1–3

    Article  PubMed  Google Scholar 

  • de Vos WM (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol Lett 46(3):281–295

    Article  Google Scholar 

  • Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubiere P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183(15):4509–4516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Efstathiou JD, McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. J Bacteriol 130(1):257–265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elmarzugi N, El Enshasy H, Abd Malek R, Othman Z, Sarmidi MR, Abdel Aziz R (2010) Optimization of cell mass production of the probiotic strain Lactococcus lactis in batch and fed-bach culture in pilot scale levels. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 873–879

    Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154(1):1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Germaine GR, Schachtele CF, Chludzinski AM (1974) Rapid filter paper assay for the dextransucrase activity from Streptococcus mutans. J Dent Res 53:1355–1360

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-U41

    Article  Google Scholar 

  • Haas W, Banas JA (2000) Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A. J Bacteriol 182(3):728–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiler MJ (1961) Fibers, yarns and filaments of water-insoluble dextran. US Patent 2:972,178

    Google Scholar 

  • Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, Iwata S (2011) Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol 408(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Mills DA (2007) Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid 58(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Kingston KB, Allen DM, Jacques NA (2002) Role of the C-terminal YG repeats of the primer-dependent streptococcal glucosyltransferase, GtfJ, in binding to dextran and mutan. Microbiology 148(Pt 2):549–558

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63(11):4581–4584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kok J, van der Vossen JM, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48(4):726–731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu H, Abe Y, Eguchi K, Matsuno H, Matsuoka Y, Sadakane T, Inoue T, Fukui K, Kodama T (2011) Kinetics of dextran-independent alpha-(1→3)-glucan synthesis by Streptococcus sobrinus glucosyltransferase I. FEBS J 278(3):531–540

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270(45):27299–27304

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21

    Article  CAS  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee CY, Yun CY, Yun JW, Oh TK, Kim CJ (1997) Production of glucooligosaccharides by an acceptor reaction using two types of glucansucrase from Streptococcus sobrinus. Biotechnol Lett 19(12):1227–1230

    Article  CAS  Google Scholar 

  • McIntyre DA, Harlander SK (1989) Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl Environ Microbiol 55(10):2621–2626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meng X, Dobruchowska JM, Pijning T, Gerwig GJ, Kamerling JP, Dijkhuizen L (2015) Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability. Appl Microbiol Biotechnol

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005a) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Mierau I, Olieman K, Mond J, Smid EJ (2005b) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Moldes AB, Alonso JL, Parajo JC (2003) Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst Eng 25(6):357–363

    Article  CAS  PubMed  Google Scholar 

  • Monchois V, Reverte A, Remaud-Simeon M, Monsan P, Willemot RM (1998) Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl Environ Microbiol 64(5):1644–1649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23(2):131–151

    Article  CAS  PubMed  Google Scholar 

  • Nagayasu M, Wardani AK, Nagahisa K, Shimizu H, Shioya S (2007) Analysis of hemin effect on lactate reduction in Lactococcus lactis. J Biosci Bioeng 103(6):529–534

    Article  CAS  PubMed  Google Scholar 

  • Neubauer H, Bauche A, Mollet B (2003) Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. Microbiology 149(Pt 4):973–982

    Article  CAS  PubMed  Google Scholar 

  • Ng DT, Sarkar CA (2013) Engineering signal peptides for enhanced protein secretion from Lactococcus lactis. Appl Environ Microbiol 79(1):347–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols SE (2002) Glucan-containing compositions and paper. U.S. Patent 6465203

  • O’Brien JP (2015) Novel composition for preparing polysaccharide fibers. U.S. Patent Application 2015/0126730

  • Oddone GM, Lan CQ, Rawsthorne H, Mills DA, Block DE (2007) Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis. Biotechnol Bioeng 96(6):1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61(3):151–158

    Article  CAS  PubMed  Google Scholar 

  • Olvera C, Centeno-Leija S, Lopez-Munguia A (2007) Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Anton Leeuw 92(1):11–20

    Article  CAS  Google Scholar 

  • Opper K (2013) Fiber composition comprising 1,3-glucan and a method of preparing same. U.S. Patent Application 2013/0168895

  • Padmanabhan PA, Kim DS, Pak D, Sim SJ (2003) Rheology and gelation of water-insoluble dextran from Leuconostoc mesenteroides NRRL B-523. Carbohydr Polym 53(4):459–468

    Article  CAS  Google Scholar 

  • Pearce BJ, Walker GJ, Slodki ME, Schuerch C (1990) Enzymic and methylation analysis of dextrans and (1→3)-α-D-glucans. Carbohydr Res 203(2):229–246

    Article  CAS  Google Scholar 

  • Pijning T, Vujicic-Zagar A, Kralj S, Dijkhuizen L, Dijkstra BW (2014) Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180. FEBS J 281(9):2159–2171

    Article  CAS  PubMed  Google Scholar 

  • Shah DS, Joucla G, Remaud-Simeon M, Russell RR (2004) Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides. J Bacteriol 186(24):8301–8308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolonen M, Saris PEJ, Siika-aho M (2004) Production of nisin with continuous adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L-lactis LAC48. Appl Microbiol Biotechnol 63(6):659–665

    Article  CAS  PubMed  Google Scholar 

  • van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240(3):428–434

    Article  PubMed  Google Scholar 

  • Vujicic-Zagar A, Pijning T, Kralj S, Lopez CA, Eeuwema W, Dijkhuizen L, Dijkstra BW (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci U S A 107(50):21406–21411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokobayashi K, Ikeda T, Misaki A (1978) Compound water-insoluble glucan and process for the production thereof. 4,072,567

  • Yu PL, Dunn NW, Kim WS (2002) Lactate removal by anionic-exchange resin improves nisin production by Lactococcus lactis. Biotechnol Lett 24(1):59–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Mills for graciously providing plasmid pMSP3535H3 used in this study. We also thank Dr. Karl Vermillion for obtaining the NMR spectra on these samples and Suzanne Unser and Kristina Glenzinski for their expert technical support. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Skory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skory, C.D., Côté, G.L. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans. Appl Microbiol Biotechnol 99, 10001–10010 (2015). https://doi.org/10.1007/s00253-015-6854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6854-0

Keywords