Skip to main content

Advertisement

Log in

β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological activities of medicinal mushrooms have been attributed to β-(1→3),(1→6)-glucans that are present in the cell wall of fungi and some plants. Antitumor, immunomodulatory, antimicrobial, antinociception, antiinflammatory, prebiotic, antioxidant, and antidiabetic are some of different properties already described for β-(1→3),(1→6)-glucans. Immune activation systems, including specific β-glucan receptors like Dectin-1, complement (CR3), and Toll (TLR), have been identified to clarify these biological effects. The β-(1→3)-glucans are synthesized by β-(1→3)-glucan synthase (GLS), an enzyme belonging to the glucosyltransferase group, which has a catalytic unit (FKS) and another regulatory (RHO). The mechanisms for adding β-(1→6) branches to the non-reducing ends of the β-(1→3)-glucan chains are unclear until now. Due to the biological importance of β-(1→3),(1→6)-glucan, it is necessary to understand the biochemical and molecular mechanisms of its synthesis, both to optimize the production of bioactive compounds and to develop antifungal drugs that interrupt this process. Therefore, the aim of this review is to gather information about the potential of β-(1→3),(1→6)-glucans, their methods of isolation, purification, and chemical characterization, as well as how these biomolecules are synthesized by fungi and what studies involving biotechnology or molecular biology have contributed to this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi Y, Okazaki M, Ohno N, Yadomae T (1994) Enhancement of cytokine production by macrophages stimulated with (1→3)-β-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull 17:1554–1560. doi:10.1248/bpb.17.1554

    Article  CAS  PubMed  Google Scholar 

  • Anusuya S, Sathiyabama M (2014) Preparation of β-D-glucan nanoparticles and its antifungal activity. Int J Biol Macromol 70:440–443. doi:10.1016/j.ijbiomac.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  • Assis IS, Chaves MB, Silveira MLL, Gern RMM, Wisbeck E, Júnior AF, Furlan SA (2013) Production of bioactive compounds with antitumor activity against sarcoma 180 by Pleurotus sajor-caju. J Med Food 16:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Awald PD, Frost D, Drake RR, Selitrennikoff CP (1994) (1,3) β-Glucan synthase activity of Neurospora crassa: identification of a substrate-binding protein. Biochim Biophys Acta 1201:312–320

    Article  CAS  PubMed  Google Scholar 

  • Baggio CH, Freitas CS, Marcon R, Werner MFDP, Rae GA, Smiderle FR, Sassaki GL, Iacomini M, Marques MCA, Santos ARS (2012) Antinociception of β-D-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition. Int J Biol Macromol 50:872–877. doi:10.1016/j.ijbiomac.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AM, Steluti RM, Dekker RFH, Cardoso MS, Corradi Da Silva ML (2003) Structural characterization of Botryosphaeran: A (1→3;1→6)-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydr Res 338:1691–1698. doi:10.1016/S0008-6215(03)00240-4

    Article  CAS  PubMed  Google Scholar 

  • Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latgé JP (2001) Glucan synthase complex of Aspergillus fumigatus. J Bacteriol 183:2273–2279. doi:10.1128/JB.183.7.2273-2279.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beauvais A, Fontaine T, Aimanianda V, Latgé JP (2014) Aspergillus Cell Wall and Biofilm. Mycopathologia 1–7. doi:10.1007/s11046-014-9766-0

  • Bickle M, Delley PA, Schmidt A, Hall MN (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17:2235–2245. doi:10.1093/emboj/17.8.2235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bzducha-Wróbel A, Błażejak S, Molenda M, Reczek L (2015) Biosynthesis of β(1,3)/(1,6)-glucans of cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur Food Res Technol 240:1023–1034. doi:10.1007/s00217-014-2406-6

    Article  Google Scholar 

  • Carbonero ER, Gracher AHP, Komura DL, Marcon R, Freitas CS, Baggio CH, Santos ARS, Torri G, Gorin PAJ, Iacomini M (2008) Lentinus edodes heterogalactan: antinociceptive and anti-inflammatory effects. Food Chem 111:531–537

    Article  CAS  Google Scholar 

  • Carbonero ER, Ruthes AC, Freitas CS, Utrilla P, Gálvez J, Da Silva EV, Sassaki GL, Gorin PAJ, Iacomini M (2012) Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotus sajor-caju. Carbohydr Polym 90:814–819. doi:10.1016/j.carbpol.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  • Chai R, Qiu C, Liu D, Qi Y, Gao Y, Shen J, Qiu L (2013) β-Glucan synthase gene overexpression and β-glucans overproduction in Pleurotus ostreatus using promoter swapping. PLoS One 8:1–7. doi:10.1371/journal.pone.0061693

    Google Scholar 

  • Chakraborty I, Mondal S, Rout D, Islam SS (2006) A water-insoluble (1,3)-β-D-glucan from the alkaline extract of an edible mushroom Termitomyces eurhizus. Carbohydr Res 341:2990–2993. doi:10.1016/j.carres.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  • Chan GC, Chan WK, Sze DM (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2(25):1–11. doi:10.1186/1756-8722-2-25

    Google Scholar 

  • Chen L, Cheung PCK (2014) Mushroom dietary fiber from the fruiting body of Pleurotus tuber-regium: fractionation and structural elucidation of nondigestible cell wall components. J Agric Food Chem 62:2891–2899. doi:10.1021/jf500112j

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu X, Zhang L, Kennedy JF (2009) Flexible chain conformation of (1→3)-β-D-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution. Carbohydr Polym 75:586–591. doi:10.1016/j.carbpol.2008.08.027

    Article  CAS  Google Scholar 

  • Chen L, Xu W, Lin S, Cheung PCK (2014a) Cell wall structure of mushroom sclerotium (Pleurotus tuber regium): Part 1. Fractionation and characterization of soluble cell wall polysaccharides. Food Hydrocoll 36:189–195. doi:10.1016/j.foodhyd.2013.09.023

    Article  CAS  Google Scholar 

  • Chen L, Zhang BB, Chen JL, Cheung PCK (2014b) Cell wall structure of mushroom sclerotium (Pleurotus tuber-regium): Part 2. Fine structure of a novel alkali-soluble hyper-branched cell wall polysaccharide. Food Hydrocoll 38:48–55. doi:10.1016/j.foodhyd.2013.11.004

    Article  Google Scholar 

  • Cilerdžić J, Vukojević J, Stajić M, Stanojković T, Glamočlija J (2014) Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J Ethnopharmacol 155:312–319. doi:10.1016/j.jep.2014.05.036

    Article  PubMed  Google Scholar 

  • Dalonso N, Souza R, Silveira MLL, Ruzza ÂA, Wagner TM, Wisbeck E, Furlan SA (2010) Characterization and antineoplasic effect of extracts obtained from Pleurotus sajor-caju fruiting bodies. Appl Biochem Biotechnol 160:2265–2274. doi:10.1007/s12010-009-8678-9

    Article  CAS  PubMed  Google Scholar 

  • Dennehy KM, Brown GD (2007) The role of the β-glucan receptor Dectin-1 in control of fungal infection. J Leukoc Biol 82:253–258. doi:10.1189/jlb.1206753

    Article  CAS  PubMed  Google Scholar 

  • Devi KSP, Roy B, Patra P, Sahoo B, Islam SS, Maiti TK (2013) Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydr Polym 94:857–865. doi:10.1016/j.carbpol.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  • Dey B, Bhunia SK, Maity KK, Patra S, Mandal S, Maiti S, Maiti TK, Sikdar SR, Islam SS (2010) Chemical analysis of an immunoenhancing water-soluble polysaccharide of an edible mushroom, Pleurotus florida blue variant. Carbohydr Res 345:2736–2741. doi:10.1016/j.carres.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  • Douglas CM (2001) Fungal β-(1,3)-D-glucan synthesis. Med Mycol 39:55–66

    Article  CAS  PubMed  Google Scholar 

  • Facchini JM, Alves EP, Aguilera C, Gern RMM, Silveira MLL, Wisbeck E, Furlan SA (2014) Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. Int J Biol Macromol 68:72–77

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Wang Y, Lv X, Shen X, Ni X, Ding K (2012) Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling. Glycoconj J 29:365–377. doi:10.1007/s10719-012-9416-z

    Article  CAS  PubMed  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. In: Theodore Friedmann JCD and SFG (ed) Advances in genetics, 1st edn. Elsevier Inc., pp 33–82

  • Freimund S, Sauter M, Käppeli O, Dutler H (2003) A new non-degrading isolation process for 1,3-β-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae. Carbohydr Polym 54:159–171

    Article  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117. doi:10.1084/jem.20021787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gern RMM, Wisbeck E, Rampinelli JR, Ninow JL, Furlan SA (2008) Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresour Technol 99:76–82

    Article  CAS  PubMed  Google Scholar 

  • Gern RMM, Junior NL, Patrício GN, Wisbeck E, Chaves MB, Furlan SA (2010) Cultivation of Agaricus blazei on Pleurotus spp. spent substrate. Braz Arch Biol Technol 53:939–944

    Article  Google Scholar 

  • Gonzaga MLC, Ricardo NMPS, Heatley F, Soares SDA (2005) Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydr Polym 60:43–49

    Article  CAS  Google Scholar 

  • Guerrero-Torres JV, Mata G, Martínez-Carrera D, Garibay-Orijel C, Garibay-Orijel R (2013) Primers for (1,3)-β-glucan synthase gene amplification and partial characterization of the enzyme in Ganoderma lucidum. Rev Iberoam Micol 30:267–270. doi:10.1016/j.riam.2012.12.006

    Article  PubMed  Google Scholar 

  • Gutiérrez A, Prieto A, Martínez AT (1996) Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus. Carbohydr Res 281:143–154. doi:10.1016/0008-6215(95)00342-8

    Article  PubMed  Google Scholar 

  • Han XQ, Yue GL, Yue RQ, Dong CX, Chan CL, Ko CH, Cheung WS, Luo KW, Dai H, Wong CK, Leung PC, Han QB (2014) Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense. PLoS One 9:1–10. doi:10.1371/journal.pone.0100380

    Google Scholar 

  • Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung N-KV, Ross GD (2004) Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol 173:797–806. doi:10.4049/jimmunol.173.2.797

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Taft CS, Selitrennikoff CP (1989) 1,3-β-D-Glucan synthase of Neurospora crassa: Partial purification and characterization of solubilized enzyme activity. Exp Mycol 13:129–139

    Article  CAS  Google Scholar 

  • Jayakumar T, Thomas PA, Sheu JR, Geraldine P (2011) In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res Int 44:851–861

    Article  CAS  Google Scholar 

  • Kavanagh K (2005) Fungi: biology and applications. John Wiley & Sons Ltd, Kildare

    Book  Google Scholar 

  • Kiho T, Katsuragawa M, Nagai K, Ukai S, Haga M (1992) Structure and antitumor activity of a branched (1→3)-β-D-glucan from the alkaline extract of Amanita muscaria. Carbohydr Res 224:237–243

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Kim KH, Choi HJ, Lee DS (2005) Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett 27:483–487. doi:10.1007/s10529-005-2225-8

    Article  CAS  PubMed  Google Scholar 

  • Klaus A, Kozarski M, Vunduk J, Todorovic N, Jakovljevic D, Zizak Z, Pavlovic V, Levic S, Niksic M, Van Griensven, LJLD (2015) Biological potential of extracts of the wild edible basidiomycete mushroom Grifola frondosa. Food Res Int 67:272–283

  • Kougias P, Wei D, Rice PJ, Ensley HE, Kalbfleisch J, Williams DL, Browder IW (2001) Normal human fibroblasts express pattern recognition receptors for fungal (1,3)-β-D-glucans. Infect Immun 69:3933–3938. doi:10.1128/IAI.69.6.3933-3938.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  PubMed  Google Scholar 

  • Lee HH, Lee JS, Cho JY, Kim YE, Hong EK (2009) Structural characteristics of immunostimulating polysaccharides from Lentinus edodes. J Microbiol Biotechnol 19:455–461. doi:10.4014/jmb.0809.542

    Article  CAS  PubMed  Google Scholar 

  • Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y, Wang CR, Zhang NY, Wen TY, Qu LY, Lv PY, Zhao R, Shi B, Wang YP, Wang XY, Liu F (2012) Isolation and identification of a novel polysaccharide–peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom. Biosci Rep 32:221–228. doi:10.1042/BSR20110012

    Article  PubMed  Google Scholar 

  • Liu J, Sun Y, Yu H, Zhang C, Yue L, Yang X, Wang L, Liu J (2012) Purification and identification of one glucan from golden oyster mushroom (Pleurotus citrinopileatus (Fr.) Singer). Carbohydr Polym 87:348–352. doi:10.1016/j.carbpol.2011.07.059

    Article  CAS  Google Scholar 

  • López-Romero E, Ruiz-Herrera J (1977) Biosynthesis of β-glucans by cell-free extracts from Saccharomyces cerevisiae. Biochim Biophys Acta 500:372–384

    Article  PubMed  Google Scholar 

  • Maity K, Samanta S, Bhanja SK, Maity S, Sen IK, Maiti S, Behera B, Maiti TK, Sikdar SR, Islam SS (2013) An immunostimulating water insoluble β-glucan of an edible hybrid mushroom: isolation and characterization. Fitoterapia 84:15–21. doi:10.1016/j.fitote.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  • Malavazi I, Goldman GH, Brown NA (2014) The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief Funct Genomics 13:456–470

    Article  PubMed  Google Scholar 

  • Masuda Y, Togo T, Mizuno S, Konishi M, Nanba H (2012) Soluble -glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway. J Leukoc Biol 91:547–556. doi:10.1189/jlb.0711386

    Article  CAS  PubMed  Google Scholar 

  • Medeiros SDV, Cordeiro SL, Cavalcanti JEC, Melchuna KM, Lima AM da S, Filho IA, Medeiros AC, Rocha KBF, Oliveira EM, Faria EDB, Sassaki GL, Rocha HAO, Sales VSF (2012) Effects of purified Saccharomyces cerevisiae (1→3)-β-glucan on venous ulcer healing. Int J Mol Sci 13:8142–8158. doi:10.3390/ijms13078142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Methacanon P, Weerawatsophon U, Tanjak P, Rachtawee P, Prathumpai W (2011) Interleukin-8 stimulating activity of low molecular weight β-glucan depolymerized by γ-irradiation. Carbohydr Polym 86:574–580. doi:10.1016/j.carbpol.2011.04.075

    Article  CAS  Google Scholar 

  • Mohacek-Grosev V, Bozac R, Puppels GJ (2001) Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim Acta Part A 57:2815–2829

    Article  CAS  Google Scholar 

  • Monschau N, Stahmann K-P, Pielken P, Sahm H (1997) In vitro synthesis of β-(1→3)-glucan with a membrane fraction of Botrytis cinerea. Mycol Res 101:97–101

    Article  CAS  Google Scholar 

  • Nandi AK, Sen IK, Samanta S, Maity K, Devi KSP, Mukherjee S, Maiti TK, Acharya K, Islam SS (2012) Glucan from hot aqueous extract of an ectomycorrhizal edible mushroom, Russula albonigra (Krombh.) Fr.: structural characterization and study of immunoenhancing properties. Carbohydr Res 363:43–50. doi:10.1016/j.carres.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Novák M, Synytsya A, Gedeon O, Slepička P, Procházka V, Synytsya A, Blahovec J, Hejlová A, Čopíková J (2012) Yeast β(1→3), (1→6)-D-glucan films: preparation and characterization of some structural and physical properties. Carbohydr Polym 87:2496–2504. doi:10.1016/j.carbpol.2011.11.031

    Article  Google Scholar 

  • Okada H, Ohnuki S, Roncero C, Konopka JB, Ohya Y (2014) Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Mol Biol Cell 25:222–233. doi:10.1091/mbc.E13-07-0396

    Article  PubMed Central  PubMed  Google Scholar 

  • Orlean PAB, Ward SM (1983) Sodium fluoride stimulates (1,3)-β-D-glucan synthase from Candida albicans. FEMS Microbiol Lett 18:31–35

    CAS  Google Scholar 

  • Palacios I, García-Lafuente A, Guillamón E, Villares A (2012) Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydr Res 358:72–77. doi:10.1016/j.carres.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  • Papaspyridi LM, Katapodis P, Gonou-Zagou Z, Kapsanaki-Gotsi E, Christakopoulos P (2010) Optimization of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture. Biochem Eng J 50:131–138. doi:10.1016/j.bej.2010.04.008

    Article  CAS  Google Scholar 

  • Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6:441–457. doi:10.2217/fmb.11.19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plato A, Hardison SE, Brown GD (2014) Pattern recognition receptors in antifungal immunity. Semin Immunopathol 37:97–106. doi:10.1007/s00281-014-0462-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Pramanik M, Chakraborty I, Mondal S, Islam SS (2007) Structural analysis of a water-soluble glucan (Fr.I) of an edible mushroom, Pleurotus sajor-caju. Carbohydr Res 342:2670–2675. doi:10.1016/j.carres.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  • Quigley DR, Selitrennikoff CP (1984) β-(1→3)-Glucan synthase activity of Neurospora crassa: kinetic analysis of negative effectors. Exp Mycol 8:320–333

    Article  CAS  Google Scholar 

  • Quigley DR, Selitrennikoff CP (1988) β(1→3)Glucan Synthase of Neurospora crassa: reaction sequence based on kinetic evidence. Curr Microbiol 16:289–293

    Article  CAS  Google Scholar 

  • Reverberi M, Di Mario F, Tomati U (2004) β-Glucan synthase induction in mushrooms grown on olive mill wastewaters. Appl Microbiol Biotechnol 66:217–225. doi:10.1007/s00253-004-1662-y

    Article  CAS  PubMed  Google Scholar 

  • Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, Barker LA, Breuel KF, DePonti WK, Kalbfleisch JH, Ensley HE, Brown GD, Gordon S, Williams D (2005) Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther 314:1079–1086. doi:10.1124/jpet.105.085415.ulate

    Article  CAS  PubMed  Google Scholar 

  • Roh DH, Bowers B, Riezman H, Cabib E (2002) Rho1p mutations specific for regulation of β(1→3)glucan synthesis and the order of assembly of the yeast cell wall. Mol Microbiol 44:1167–1183. doi:10.1046/j.1365-2958.2002.02955.x

    Article  CAS  PubMed  Google Scholar 

  • Römmele G, Traxler P, Wehrli W (1983) Papulacandins - the relationship between chemical structure and effect on glucan synthesis in yeast. J Antibiot (Tokyo) 36:1539–1542

    Article  Google Scholar 

  • Ruiz-Herrera J (1991) Biosynthesis of β-glucans in fungi. Antonie Van Leeuwenhoek 60:72–81

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J (2012) Fungal Cell Wall: Structure, synthesis, and assembly, Second Edi. CRC, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Ruthes AC, Carbonero ER, Córdova MM, Baggio CH, Santos ARS, Sassaki GL, Cipriani TR, Gorin PAJ, Iacomini M (2013) Lactarius rufus (1→3), (1→6)-β-D-glucans: structure, antinociceptive and anti-inflammatory effects. Carbohydr Polym 94:129–136. doi:10.1016/j.carbpol.2013.01.026

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Yoshioka Y, Yoloi M, Yamada J (1990) Distinct gelation mechanism between linear and branched (1→3)-β-D-glucans as revealed by high resolution solid state 13C NMR. Biopolymers 29:1689–1698

    Article  CAS  PubMed  Google Scholar 

  • Santos-Neves JC, Pereira MI, Carbonero ER, Gracher AHP, Alquini G, Gorin PAJ, Sassaki GL, Iacomini M (2008) A novel branched αβ-glucan isolated from the basidiocarps of the edible mushroom Pleurotus florida. Carbohydr Polym 73:309–314. doi:10.1016/j.carbpol.2007.11.030

    Article  CAS  Google Scholar 

  • Satitmanwiwat S, Ratanakhanokchai K, Laohakunjit N, Chao LK, Chen ST, Pason P, Tachaapaikoon C, Kyu KL (2012) Improved purity and immunostimulatory activity of β-(1→3), (1→6)-glucan from Pleurotus sajor-caju using cell wall-degrading enzymes. J Agric Food Chem 60:5423–5430

    Article  CAS  PubMed  Google Scholar 

  • Schott E, Diamantina C, Heyder T, Pereira EM, Morais M, Rosa HH, Furlan SA, Maria R, Gern M (2013) Effect of polysaccharides extracted from Pleurotus ostreatus and Agaricus blazei on growth of probiotic bacteria. J Int Sci Publ Agric Food 1:74–83

    Google Scholar 

  • Seong SK, Kim HW (2010) Potentiation of Innate Immunity by β-Glucans. Mycobiology 38:144–148. doi:10.4489/MYCO.2010.38.2.144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahinian S, Bussey H, Ha Â, Avenue P (2000) β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    Article  CAS  PubMed  Google Scholar 

  • Shematek EM, Braatz JA, Cabib E (1980) Biosynthesis of the yeast cell wall. I. Preparation and properties of β-(1 leads to 3) glucan synthetase. J Biol Chem 255:888–894

    CAS  PubMed  Google Scholar 

  • Silveira MLL, Smiderle FR, Moraes CP, Borato DG, Baggio CH, Ruthes AC, Wisbeck E, Sassaki GL, Cipriani TR, Furlan SA, Iacomini M (2014) Structural characterization and anti-inflammatory activity of a linear β-D-glucan isolated from Pleurotus sajor-caju. Carbohydr Polym 113:588–596. doi:10.1016/j.carbpol.2014.07.057

    Article  CAS  PubMed  Google Scholar 

  • Silveira MLL, Smiderle FR, Agostini F, Pereira EM, Bonatti-Chaves M, Wisbeck E, Ruthes AC, Sassaki GL, Cipriani TR, Furlan SA, Iacomini M (2015) Exopolysaccharide produced by Pleurotus sajor-caju: Its chemical structure and anti-inflammatory activity. Int J Biol Macromol 75:90–96. doi:10.1016/j.ijbiomac.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  • Smiderle FR, Olsen LM, Carbonero ER, Baggio CH, Freitas CS, Marcon R, Santos ARS, Gorin PAJ, Iacomini M (2008) Anti-inflammatory and analgesic properties in a rodent model of a (1→3), (1→6)-β-linked-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol 597:86–91. doi:10.1016/j.ejphar.2008.08.028

    Article  CAS  PubMed  Google Scholar 

  • Smiderle FR, Olsen LM, Ruthes AC, Czelusniak PA, Santana-Filho AP, Sassaki GL, Gorin PAJ, Iacomini M (2012) Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr Polym 87:368–376. doi:10.1016/j.carbpol.2011.07.063

    Article  CAS  Google Scholar 

  • Smiderle FR, Alquini G, Tadra-Sfeir MZ, Iacomini M, Wichers HJ, Van Griensven LJLD (2013) Agaricus bisporus and Agaricus brasiliensis (1→6)-β-D-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr Polym 94:91–99

    Article  CAS  PubMed  Google Scholar 

  • Synytsya A, Novák M (2013) Structural diversity of fungal glucans. Carbohydr Polym 92:792–809. doi:10.1016/j.carbpol.2012.09.077

    Article  CAS  PubMed  Google Scholar 

  • Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, Kováříková E, Čopíková J (2009) Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym 76:548–556. doi:10.1016/j.carbpol.2008.11.021

    Article  CAS  Google Scholar 

  • Tada R, Harada T, Nagi-Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N (2007) NMR characterization of the structure of a β-(1,3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohydr Res 342:2611–2618. doi:10.1016/j.carres.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  • Teparić R, Mrsa V (2013) Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr Genet 59:171–185. doi:10.1007/s00294-013-0403-0

    Article  PubMed  Google Scholar 

  • Tomazett PK, Félix CR, Lenzi HL, de Paula FF, de Almeida Soares CM, Pereira M (2010) 1,3-β-D-Glucan synthase of Paracoccidioides brasiliensis: recombinant protein, expression and cytolocalization in the yeast and mycelium phases. Fungal Biol 114:809–816. doi:10.1016/j.funbio.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang L (2009) Structure and chain conformation of five water-soluble derivatives of a β-D-glucan isolated from Ganoderma lucidum. Carbohydr Res 344:105–112. doi:10.1016/j.carres.2008.09.024

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang J, Li Q, Zhang Q, You R, Cheng Y, Luo L, Zhang Y (2014a) Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes. Food Res Int 62:223–232

    Article  CAS  Google Scholar 

  • Wang Q, Chen S, Han L, Lian M, Wen Z, Jiayinaguli T, Liu L, Sun R, Cao Y (2014b) Antioxidant activity of carboxymethyl (1→3)-β-D-glucan (from the sclerotium of Poria cocos) sulfate (in vitro). Int J Biol Macromol 69:229–235. doi:10.1016/j.ijbiomac.2014.05.038

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Zhang L, Williams DL, Browder IW (2002) Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor-1 dependent mechanism. Wound Repair Regen 10:161–168

    Article  PubMed  Google Scholar 

  • Wolff ERS, Wisbeck E, Silveira MLL, Gern RMM, Pinho MSL, Furlan SA (2008) Antimicrobial and antineoplasic activity of Pleurotus ostreatus. Appl Biochem Biotechnol 151:402–412. doi:10.1007/s12010-008-8208-1

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka D, Tada R, Adachi Y, Ishibashi KI, Motoi M, Iwakura Y, Ohno N (2012) Agaricus brasiliensis-derived β-glucans exert immunoenhancing effects via a dectin-1-dependent pathway. Int Immunopharmacol 14:311–319

    Article  CAS  PubMed  Google Scholar 

  • Yang YH, Kang H-W, Ro H-S (2014) Cloning and molecular characterization of β-1,3-Glucan synthase from Sparassis crispa. Mycobiology 42:167–173. doi:10.5941/MYCO.2014.42.2.167

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang AQ, Xu M, Fu L, Sun PL (2013a) Structural elucidation of a novel mannogalactan isolated from the fruiting bodies of Pleurotus geesteranus. Carbohydr Polym 92:236–240. doi:10.1016/j.carbpol.2012.08.105

    Article  CAS  PubMed  Google Scholar 

  • Zhang AQ, Zhang Y, Yang JH, Sun PL (2013b) Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii. Carbohydr Polym 92:2239–2244. doi:10.1016/j.carbpol.2012.11.069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by CAPES and UNIVILLE.

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Maria Miranda Gern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalonso, N., Goldman, G.H. & Gern, R.M.M. β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl Microbiol Biotechnol 99, 7893–7906 (2015). https://doi.org/10.1007/s00253-015-6849-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6849-x

Keywords

Navigation