Skip to main content
Log in

Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Extraction of chitin from mechanically pre-purified shrimp shells can be achieved by successive NaOH/HCl treatment, protease/HCl treatment or by environmentally friendly fermentation with proteolytic/lactic acid bacteria (LAB). For the last mentioned alternative, scale-up of shrimp shell chitin purification was investigated in 0.25 L (F1), 10 L (F2), and 300 L (F3) fermenters using an anaerobic, chitinase-deficient, proteolytic enrichment culture from ground meat for deproteination and a mixed culture of LAB from bio-yoghurt for decalcification. Protein removal in F1, F2, and F3 proceeded in parallel within 40 h at an efficiency of 89–91 %. Between 85 and 90 % of the calcit was removed from the shells by LAB in another 40 h in F1, F2, and F3. After deproteination of shrimp shells in F3, spent fermentation liquor was re-used for a next batch of 30-kg shrimp shells in F4 (300 L) which eliminated 85.5 % protein. The purity of the resulting chitin was comparable in F1, F2, F3, and F4. Viscosities of chitosan, obtained after chitin deacetylation and of chitin, prepared biologically or chemically in the laboratory, were much higher than those of commercially available chitin and chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods—a review. Food Technol Biotechnol 51:12–25

    Google Scholar 

  • Aytekin O, Elibol M (2010) Cocultivation of Lactococcus lactis and Teredinobacter turnirae for biological chitin extraction from prawn waste. Bioprocess Biosyst Eng 33:393–399

    Article  CAS  PubMed  Google Scholar 

  • Bajaj M, Winter J, Gallert C (2011) Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan from Crangon crangon shrimp shells. Biochem Eng J 56:51–62

    Article  CAS  Google Scholar 

  • Benitez JA, Silva AJ, Finkenstein RA (2001) Environmental signals controlling production of haemagglutinin/protease in Vibrio cholerae. Infect Immun 69:6549–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li C, Ji X, Zhong Z, Li P (2008) Recovery of protein from discharged wastewater during the production of chitin. Bioresour Technol 99:570–574

    Article  CAS  PubMed  Google Scholar 

  • Cira L, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366

    Article  CAS  Google Scholar 

  • DeMan JC, Rogosa M, Sharpe L (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  • Duan S, Li L, Zhuang Z, Wu W, Hong S, Zhou J (2012) Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria. Carbohydr Polym 89:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • DVGW (2013). Neufassung der Trinkwasserverordnung vom 07.08.2013 (In German). http://www.dvgw.de/wasser/recht-trinkwasserverordnung/trinkwasserverordnung/. Accessed 26 June 2015.

  • FAOSTAT (2014) Fishery and Aquaculture Statistics yearbook 2012. Published by Food and Agriculture Organization of the United Nations. Rome. http://www.fao.org/fishery/publications/yearbooks/en. Accessed 7 April 2015.

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society of Microbiology ASM, Washington D.C

    Google Scholar 

  • Gortari MC, Hours RA (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol 16(3):1–13

    Google Scholar 

  • Hoffmann K, Daum G, Köster M, Kulicke WM, Meyer-Rammes H, Bisping B, Meinhardt F (2010) Genetic improvement of Bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular mass chitin and chitosan. Appl Environ Microbiol 76:8211–8221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda J, Kitaoka M, Tokuyasu K, Sasaki C, Fukamizo T, Hayashi K (2003) Kinetic studies on the hydrolysis of N-acetylated and N-deacetylated derivatives of 4-methylumbelliferyl chitobioside by the family 18 chitinases ChiA and ChiB from Serratia marcescens. J Biochem 133:253–258

    Article  CAS  PubMed  Google Scholar 

  • Jung WJ, Jo GH, Kuk JH, Kim KY, Park RD (2006) Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Appl Microbiol Biotechnol 71:234–237

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Dhillon GS (2013) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 4:1–18. doi:10.3109/07,388,551.2013.798256

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeCleir GR, Buchan A, Hollibaugh JT (2004) Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distribution. Appl Environ Microbiol 70:6977–6983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerma GV, Marquez HG, Gimeno M, Luna AL, Barzana E, Shirai K (2013) Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour Technol 146:794–798

    Article  Google Scholar 

  • Morimoto K, Karita T, Kimura T, Sakka K, Ohmiya K (1997) Cloning, sequenzing and expression of the gene encoding Clostridium paraputrifcium chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J Bacteriol 179:7306–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (1999) Sequencing, expression, and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase ChiA. Appl Microbiol Biotechnol 51:340–347

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Yoshimoto M, Karita S, Kimura T, Ohmiya K, Sakka K (2007) Characterization of the third chitinase Chi18C of Clostridium paraputrificum M-2. Appl Microbiol Biotechnol 73:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4:12–18

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biot 54:808–813

    Article  CAS  Google Scholar 

  • Rao MS, Stevens WF (2005) Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversioin to chitosan. J Chem Technol Biotechnol 80:1080–1087

    Article  CAS  Google Scholar 

  • Sachindra NM, Bhaskar N, Mahendrakar NS (2006) Recovery of carotenoids from shrimp waste in organic solvents. Waste Manag 26:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Shirai K, Guerrero I, Huerta S, Saucedo G, Casillo A, Gonzalez RO, Hall GM (2001) Effect of initial glucose and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzym Microb Technol 28:446–452

    Article  CAS  Google Scholar 

  • Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Bajaj M, Schneider R, Grage SL, Ulrich AS, Winter J, Gallert C (2013) Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization. Microb Cell Factories 12:90

    Article  Google Scholar 

  • Xu Y, Gallert C, Winter J (2008) Chitin purification from shrimp waste by microbial deproteination and decalcification. Appl Microbiol Biot 79:687–697

    Article  CAS  Google Scholar 

  • Younes I, Haiji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jin Y, Deng Y, Wanga D, Zhao Y (2012) Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohyd Res 362:13–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Urtel, Friedrichskoog, North Sea, Germany, for providing shrimp shell waste. Late Prof. Dr. Müller von der Hägen and Dr. H. Thomsen, SeeLab Wesselburen, and GSR Büsum are acknowledged for cooperation and support in pre-treatment of shrimp shells. GSR Büsum is gratefully acknowledged for allowing us to use their equipment and factory premises to carry out pilot-scale experiments.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mini Bajaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, M., Freiberg, A., Winter, J. et al. Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Appl Microbiol Biotechnol 99, 9835–9846 (2015). https://doi.org/10.1007/s00253-015-6841-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6841-5

Keywords

Navigation