Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 17, pp 6997–7008 | Cite as

Antiviral activities of whey proteins

  • Tzi Bun NgEmail author
  • Randy Chi Fai CheungEmail author
  • Jack Ho Wong
  • Yan Wang
  • Denis Tsz Ming Ip
  • David Chi Cheong Wan
  • Jiang Xia
Mini-Review

Abstract

Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe3+-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity.

Keywords

Whey proteins Antiviral Lactoferrin Lactalbumin Lactoglobulin Lysozyme 

Notes

Acknowledgments

We are grateful to Food and Health Bureau, Government of Hong Kong Special Administrative Region for award of a research grant (HMRF 12110672)

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. Alfajaro MM, Rho MC, Kim HJ, Park JG, Kim DS, Hosmillo M, Son KY, Lee JH, Park SI, Kang MI, Ryu YB, Park KH, Oh HM, Lee SW, Park SJ, Lee WS, Cho KO (2014) Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract. Res Vet Sci 96(3):567–575CrossRefPubMedGoogle Scholar
  2. Almehdar HA, El-Fakharany EM, Uversky VN, Redwan EM (2015) Disorder in milk proteins: structure, functional disorder, and biocidalpotentials of lactoperoxidase. Curr Protein Pept SciGoogle Scholar
  3. Ammendolia MG, Agamennone M, Pietrantoni A, Lannutti F, Siciliano RA, DeGiulio B, Amici C, Superti F (2012) Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog Glob Health 106(1):12–19PubMedCentralCrossRefPubMedGoogle Scholar
  4. Andersen JH, Jenssen H, Gutteberg TJ (2003) Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection andexhibit synergy when combined with acyclovir. Antiviral Res 58(3):209–215CrossRefPubMedGoogle Scholar
  5. Andersen JH, Jenssen H, Sandvik K, Gutteberg TJ (2004) Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparin sulphate at the cell surface. J Med Virol 74(2):262–271CrossRefPubMedGoogle Scholar
  6. Arnold D, Di Biase AM, Marchetti M, Pietrantoni A, Valenti P, Seganti L, Superti F (2002) Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antiviral Res 53(2):153–158CrossRefPubMedGoogle Scholar
  7. Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT (2006) Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res Hum Retroviruses 22(9):897–907CrossRefPubMedGoogle Scholar
  8. Berkhout B, Derksen GC, Back NK, Klaver B, de Kruif CG, Visser S (1997) Structural and functional analysis of negatively charged milk proteins with anti-HIV activity. AIDS Res Hum Retroviruses 13:1101–1107CrossRefPubMedGoogle Scholar
  9. Berkhout B, van Wamel JL, Beljaars L, Meijer DK, Visser S, Floris R (2002) Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Res 55:341–355CrossRefPubMedGoogle Scholar
  10. Bojsen A, Buesa J, Montava R, Kvistgaard AS, Kongsbak MB, Petersen TE, Heegaard CW, Rasmussen JT (2007) Inhibitory activities of bovine macromolecular whey proteins on rotavirus infections in vitro and in vivo. J Dairy Sci 90(1):66–74CrossRefPubMedGoogle Scholar
  11. Chen HL, Wang LC, Chang CH, Yen CC, Cheng WT, Wu SC, Hung CM, Kuo MF, Chen CM (2008) Recombinant porcine lactoferrin expressed in the milk of transgenic mice protectsneonatal mice from a lethal challenge with enterovirus type 71. Vaccine 26(7):891–898CrossRefPubMedGoogle Scholar
  12. Chen SD, Li T, Gao H, Zhu QC, Lu CJ, Wu HL, Peng T, Yao XS (2013) Anti HSV-1flavonoid derivatives tethered with houttuynin from Houttuynia cordata. Planta Med 79(18):1742–1748Google Scholar
  13. Chobert JM, Sitohy M, Billaudel S, Dalgalarrondo M, Haertlé T (2007) Anticytomegaloviral activity of esterified milk proteins and L-polylysines. J Mol Microbiol Biotechnol 13:255–258CrossRefPubMedGoogle Scholar
  14. Cocchi F, DeVico AL, Lu W, Popovic M, Latinovic O, Sajadi MM, Redfield RR, Lafferty MK, Galli M, Garzino-Demo A, Gallo RC (2012) Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc Natl Acad Sci USA 109(14):5411–5416PubMedCentralCrossRefPubMedGoogle Scholar
  15. Dang Z, Jung K, Zhu L, Xie H, Lee KH, Chen CH, Huang L (2015) Phenolic diterpenoid derivatives as anti-influenza a virus agents. ACS Med Chem Lett 6(3):355–358CrossRefPubMedGoogle Scholar
  16. El-Agamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R (1992) Antibacterial and antiviral activity of camel milk protective proteins. J Dairy Res 59(2):169–175CrossRefPubMedGoogle Scholar
  17. El-Fakharany EM, Sánchez L, Al-Mehdar HA, Redwan EM (2013) Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study. Virol J 10:199PubMedCentralCrossRefPubMedGoogle Scholar
  18. Farquhar C, VanCott TC, Mbori-Ngacha DA, Horani L, Bosire RK, Kreiss JK, Richardson BA, John-Stewart GC (2002) Salivary secretory leukocyte protease inhibitoris associated with reduced transmission of human immunodeficiency virus type 1 through breast milk. J Infect Dis 186(8):1173–1176PubMedCentralCrossRefPubMedGoogle Scholar
  19. Florian PE, Macovei A, Lazar C, Milac AL, Sokolowska I, Darie CC, Evans RW, Roseanu A, Branza-Nichita N (2013) Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. J Med Virol 85(5):780–788CrossRefPubMedGoogle Scholar
  20. Florisa R, Recio I, Berkhout B, Visser S (2003) Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr Pharm Des 9:1257–1275CrossRefPubMedGoogle Scholar
  21. Fouda GG, Jaeger FH, Amos JD, Ho C, Kunz EL, Anasti K, Stamper LW, Liebl BE, Barbas KH, Ohashi T, Moseley MA, Liao HX, Erickson HP, Alam SM, Permar SR (2013) Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breastmilk. Proc Natl Acad Sci USA 110(45):18220–18225PubMedCentralCrossRefPubMedGoogle Scholar
  22. Furlund CB, Kristoffersen AB, Devold TG, Vegarud GE, Jonassen CM (2012) Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture. Nutr Res 32(7):503–513CrossRefPubMedGoogle Scholar
  23. Ghosh T, Auerochs S, Saha S, Ray B, Marschall M (2010) Anti-cytomegalovirus activity of sulfated glucans generated from a commercial preparation of rice bran. Antivir Chem Chemother 21(2):85–95CrossRefPubMedGoogle Scholar
  24. Gualdi L, Mertz S, Gomez AM, Ramilo O, Wittke A, Mejias A (2013) Lack of effect of bovine lactoferrin in respiratory syncytial virus replication and clinical disease severity in the mouse model. Antiviral Res 99(2):188–195CrossRefPubMedGoogle Scholar
  25. Habte HH, de Beer C, Lotz ZE, Tyler MG, Kahn D, Mall AS (2008) Inhibition of human immunodeficiency virus type 1 activity by purified human breast milk mucin (MUC1) in an inhibition assay. Neonatology 93(3):162–170CrossRefPubMedGoogle Scholar
  26. Hara K, Ikeda M, Saito S, Matsumoto S, Numata K, Kato N, Tanaka K, Sekihara H (2002) Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatol Res 24(3):228CrossRefPubMedGoogle Scholar
  27. Harnett SM, Oosthuizen V, van de Venter M (2005) Anti-HIV activities of organic andaqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J Ethnopharmacol 96(1-2):113–119CrossRefPubMedGoogle Scholar
  28. Ikeda M, Nozaki A, Sugiyama K, Tanaka T, Naganuma A, Tanaka K, Sekihara H, Shimotohno K, Saito M, Kato N (2000) Characterization of antiviral activity oflactoferrin against hepatitis C virus infection in human cultured cells. Virus Res 66:51–63CrossRefPubMedGoogle Scholar
  29. Inagaki M, Muranishi H, Yamada K, Kakehi K, Uchida K, Suzuki T, Yabe T, Nakagomi T, Nakagomi O, Kanamaru Y (2014) Bovine κ-casein inhibits human rotavirus (HRV) infection via direct binding ofglycans to HRV. J Dairy Sci 97(5):2653–2661CrossRefPubMedGoogle Scholar
  30. Jenssen H (2005) Anti herpes simplex virus activity of lactoferrin/lactoferricin—an example of antiviral activity of antimicrobial protein/peptide. Cell Mol Life Sci 62(24):3002–3013CrossRefPubMedGoogle Scholar
  31. Jenssen H, Hancock RE (2009) Antimicrobial properties of lactoferrin. Biochimie 91(1):19–29CrossRefPubMedGoogle Scholar
  32. Kanwar JR, Kanwar RK, Sun X, Punj V, Matta H, Morley SM, Parratt A, Puri M, Sehgal (2009) Molecular and biotechnological advances in milk proteins in relation to human health. Curr Protein Pept Sci 10:308–338CrossRefPubMedGoogle Scholar
  33. Klos M, van de Venter M, Milne PJ, Traore HN, Meyer D, Oosthuizen V (2009) In vitroanti-HIV activity of five selected South African medicinal plant extracts. J Ethnopharmacol 124(2):182–188CrossRefPubMedGoogle Scholar
  34. Lee-Huang S, Maiorov V, Huang PL, Ng A, Lee HC, Chang YT, Kallenbach N, Huang PL, Chen HC (2005) Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44(12):4648–4655CrossRefPubMedGoogle Scholar
  35. Liao Y, El-Fakkarany E, Lönnerdal B, Redwan EM (2012) Inhibitory effects of native and recombinant full-length camel lactoferrin and its N and C lobes on hepatitis C virus infection of Huh7.5 cells. J Med Microbiol 61(Pt 3):375–383CrossRefPubMedGoogle Scholar
  36. Lu L, Yang X, Li Y, Jiang S (2013) Chemically modified bovine beta-lactoglobulin inhibits human papillomavirus infection. Microbes Infect 15(6-7):506–510CrossRefPubMedGoogle Scholar
  37. Marchetti M, Superti F, Ammendolia MG, Rossi P, Valenti P, Seganti L (1999) Inhibition of poliovirus type 1 infection by iron-, manganese- and zinc-saturated lactoferrin. Med Microbiol Immunol 187(4):199–204CrossRefPubMedGoogle Scholar
  38. Marchetti M, Ammendolia MG, Superti F (2009) Glycosaminoglycans are not indispensable for the anti-herpes simplex virus type 2 activity of lactoferrin. Biochimie 91(1):155–159CrossRefPubMedGoogle Scholar
  39. Marr AK, Jenssen H, Moniri MR, Hancock RE, Panté N (2009) Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie 91(1):160–164CrossRefPubMedGoogle Scholar
  40. McCann KB, Lee A, Wan J, Roginski H, Coventry MJ (2003) The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J Appl Microbiol 95(5):1026--1033Google Scholar
  41. Mthembu Y, Lotz Z, Tyler M, de Beer C, Rodrigues J, Schoeman L, Mall AS (2014) Purified human breast milk MUC1 and MUC4 inhibit human immunodeficiency virus. Neonatology 105(3):211–217CrossRefPubMedGoogle Scholar
  42. Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:321PubMedCentralCrossRefPubMedGoogle Scholar
  43. Murphy ME, Kariwa H, Mizutani T, Yoshimatsu K, Arikawa J, Takashima I (2000) In vitro antiviral activity of lactoferrin and ribavirin upon hantavirus. Arch Virol 145(8):1571–1582CrossRefPubMedGoogle Scholar
  44. Murphy ME, Kariwa H, Mizutani T, Tanabe H, Yoshimatsu K, Arikawa J, Takashima I (2001) Characterization of in vitro and in vivo antiviral activity of lactoferrin and ribavirin upon hantavirus. J Vet Med Sci 63(6):637–645CrossRefPubMedGoogle Scholar
  45. Neurath AR, Debnath AK, Strick N, Li YY, Lin K, Jiang S (1995) Blocking of CD4 cell receptors for the human immunodeficiency virus type 1 (HIV-1) by chemically modified bovine milk proteins: potential for AIDS prophylaxis. J Mol Recognit 8:304–316CrossRefPubMedGoogle Scholar
  46. Ng TB, Ye XY (2004) A polymeric immunoglobulin receptor-like milk protein with inhibitory activity onhuman immunodeficiency virus type 1 reverse transcriptase. Int J Biochem Cell Biol 36(11):2242–2249CrossRefPubMedGoogle Scholar
  47. Ng TB, Lam TL, Au TK, Ye XY, Wan CC (2001) Inhibition of human immunodeficiency virus type 1 reverse transcriptase, protease and integrase by bovine milk proteins. Life Sci 69:2217–2223CrossRefPubMedGoogle Scholar
  48. Oevermann A, Engels M, Thomas U, Pellegrini A (2003) The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antiviral Res 59(1):23–33CrossRefPubMedGoogle Scholar
  49. Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L, Superti F (2003) Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother 47(8):2688–2691PubMedCentralCrossRefPubMedGoogle Scholar
  50. Pietrantoni A, Ammendolia MG, Tinari A, Siciliano R, Valenti P, Superti F (2006) Bovine lactoferrin peptidic fragments involved in inhibition of Echovirus 6 in vitro infection. Antiviral Res 69(2):98–106CrossRefPubMedGoogle Scholar
  51. Pietrantoni A, Ammendolia MG, Superti F (2012) Bovine lactoferrin: involvement of metal saturation and carbohydrates in the inhibition of influenza virus infection. Biochem Cell Biol 90(3):442–448CrossRefPubMedGoogle Scholar
  52. Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L (1998) Antiviral effect of bovine lactoferrin saturated with metal ions on early stepsof humanimmunodeficiency virus type 1 infection. Int J Biochem Cell Biol 30(9):1055–1062CrossRefPubMedGoogle Scholar
  53. Redwan EM, El-Fakharany EM, Uversky VN, Linjawi MH (2014) Screening the anti infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against hepatitis C virus. BMC Complement Altern Med 14:219PubMedCentralCrossRefPubMedGoogle Scholar
  54. Shestakov A, Jenssen H, Nordström I, Eriksson K (2012) Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infectionin mice. Antiviral Res 93(3):340–345CrossRefPubMedGoogle Scholar
  55. Shin K, Wakabayashi H, Yamauchi K, Teraguchi S, Tamura Y, Kurokawa M, Shiraki K (2005) Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J Med Microbiol 54(Pt 8):717–723CrossRefPubMedGoogle Scholar
  56. Shin HB, Choi MS, Ryu B, Lee NR, Kim HI, Choi HE, Chang J, Lee KT, Jang DS, Inn KS (2013) Antiviral activity of carnosic acid against respiratory syncytial virus. Virol J 10:303PubMedCentralCrossRefPubMedGoogle Scholar
  57. Sitohy M, Billaudel S, Haertlé T, Chobert JM (2007) Antiviral activity of esterified alpha-lactalbumin and beta-lactoglobulin against herpes simplex virus type 1. Comparison with the effect of acyclovir and L-polylysines. J Agric Food Chem 55:10214–10220CrossRefPubMedGoogle Scholar
  58. Sitohy M, Scanu M, Besse B, Mollat C, Billaudel S, Haertlé T, Chobert JM (2010) Influenza virus A subtype H1N1 is inhibited by methylated β-lactoglobulin. J Dairy Res 77(4):411–418CrossRefPubMedGoogle Scholar
  59. Superti F, Ammendolia MG, Valenti P, Seganti L (1997) Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med Microbiol Immunol 186(2-3):83–91CrossRefPubMedGoogle Scholar
  60. Swart PJ, Kuipers EM, Smit C, Van Der Strate BW, Harmsen MC, Meijer DK (1998) Lactoferrin. Antiviral activity of lactoferrin. Adv Exp Med Biol 443:205–213CrossRefPubMedGoogle Scholar
  61. Taha SH, Mehrez MA, Sitohy MZ, Abou Dawood AG, Abd-El Hamid MM, Kilany WH (2010) Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1). Virol J 7:330PubMedCentralCrossRefPubMedGoogle Scholar
  62. Tshikalange TE, Meyer JJ, Lall N, Muñoz E, Sancho R, Van de Venter M, Oosthuizen V (2008) In vitro anti-HIV-1 properties of ethnobotanically selected SouthAfrican plants used in the treatment of sexually transmitted diseases. J Ethnopharmacol 119(3):478–481CrossRefPubMedGoogle Scholar
  63. van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK (2001) Antiviral activities of lactoferrin. Antiviral Res 52(3):225–239CrossRefPubMedGoogle Scholar
  64. van der Strate BW, De Boer FM, Bakker HI, Meijer DK, Molema G, Harmsen MC (2003) Synergy of bovine lactoferrin with the anti-cytomegalovirus drug cidofovir in vitro. Antiviral Res 58(2):159–165CrossRefPubMedGoogle Scholar
  65. Viani RM, Gutteberg TJ, Lathey JL, Spector SA (1999) Lactoferrin inhibits HIV-1 replication in vitro and exhibits synergy when combined with zidovudine. AIDS 13(10):1273–1274CrossRefPubMedGoogle Scholar
  66. Waarts BL, Aneke OJ, Smit JM, Kimata K, Bittman R, Meijer DK, Wilschut J (2005) Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate. Virology 333(2):284–292CrossRefPubMedGoogle Scholar
  67. Wang H, Ye X, Ng TB (2000) First demonstration of an inhibitory activity of milk proteins against human immunodeficiency virus-1reverse transcriptase and the effect of succinylation. Life Sci 67:2745–2752CrossRefPubMedGoogle Scholar
  68. Wang SX, Zhang XS, Guan HS, Wang W (2014) Potential anti-HPV and related canceragents from marine resources: an overview. Mar Drugs 12(4):2019–2035PubMedCentralCrossRefPubMedGoogle Scholar
  69. Wong JH, Liu Z, Law KW, Liu F, Xia L, Wan DC, Ng TB (2014) A study of effects of peptide fragments of bovine and human lactoferrins on activities of three key HIV-1 enzymes. Peptides 62:183–188CrossRefPubMedGoogle Scholar
  70. Xu L, Su W, Jin J, Chen J, Li X, Zhang X, Sun M, Sun S, Fan P, An D, Zhang H, Zhang X, Kong W, Ma T, Jiang C (2014) Identification of luteolin as enterovirus 71 andcoxsackievirus A16 inhibitors through reporter viruses and cell viability-basedscreening. Viruses 6(7):2778–2795PubMedCentralCrossRefPubMedGoogle Scholar
  71. Ye XY, Ng TB (2000a) First demonstration of lactoribonuclease, a ribonuclease from bovine milk with similarity to bovine pancreatic ribonuclease. Life Sci 67(16):2025–2032CrossRefPubMedGoogle Scholar
  72. Ye XY, Ng TB (2000b) Purification and characterization of glycolactin, a novelglycoprotein from bovine milk. Life Sci 66(13):1177–1186CrossRefPubMedGoogle Scholar
  73. Ye XY, Ng TB (2000c) Purification of a novel apolipoprotein H-like milk protein with ribonucleolytic and cell-free translation inhibitory activities. Life Sci 67(8):887–894CrossRefPubMedGoogle Scholar
  74. Ye XY, Cheng KJ, Ng TB (1999) Isolation and characterization of angiogenin-1 and anovel protein designated lactogenin from bovine milk. Biochem Biophys Res Commun 263(1):187–191CrossRefPubMedGoogle Scholar
  75. Yolken RH, Peterson JA, Vonderfecht SL, Fouts ET, Midthun K, Newburg DS (1992) Human milk mucin inhibits rotavirus replication and prevents experimentalgastroenteritis. J Clin Invest 90(5):1984–1991PubMedCentralCrossRefPubMedGoogle Scholar
  76. Zimecki M, Kruzel ML (2007) Milk-derived proteins and peptides of potential therapeutic and nutritive value. J Exp Ther Oncol 6(2):89–106PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tzi Bun Ng
    • 1
    Email author
  • Randy Chi Fai Cheung
    • 1
    Email author
  • Jack Ho Wong
    • 1
  • Yan Wang
    • 1
  • Denis Tsz Ming Ip
    • 1
  • David Chi Cheong Wan
    • 1
  • Jiang Xia
    • 2
  1. 1.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
  2. 2.Department of Chemistry, Faculty of ScienceThe Chinese University of Hong KongHong KongChina

Personalised recommendations