Applied Microbiology and Biotechnology

, Volume 99, Issue 20, pp 8429–8440 | Cite as

Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture

  • Dongdong Hu
  • Yating Sun
  • Xuping Liu
  • Jintao Liu
  • Xintao Zhang
  • Liang Zhao
  • Haibin Wang
  • Wen-Song TanEmail author
  • Li FanEmail author
Biotechnological products and process engineering


Yeast extract (YE), as a non-animal source additive for mammalian cell culture medium, has been widely used for manufacturing of therapeutic proteins. In the present study, one particular YE was found to have significantly improved the specific productivity (q p) of Fc-fusion protein in recombinant Chinese hamster ovary (rCHO) cell culture. In order to elucidate the intracellular effects of YE on protein productivity, steps of the target protein synthesis process were investigated to unveil their variations caused by YE addition. Stepwise analysis on Fc-fusion protein synthesis process showed that YE enhanced Fc-fusion protein gene transcription with cell cycle arrest at G1 phase; mammalian target of rapamycin (mTOR) signaling pathway was activated to enhance the translation of Fc-fusion protein, and the block in post-translational steps of Fc-fusion protein was alleviated by YE addition as well. Our results revealed the responses of multiple protein production steps to the addition of YE and provided a practical guidance for the separation and application of active compounds from hydrolysates.


Chinese hamster ovary cells Yeast extract Fc-fusion protein Specific productivity Cell cycle arrest mTOR 



This work was supported by the National Natural Science Foundation of China (Nos. 21206040 and 21406066), the National Science and Technology Major Project (No. 2013ZX10004003-003-003), and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A303).

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_6789_MOESM1_ESM.pdf (112 kb)
ESM 1 (PDF 112 kb)


  1. Aggarwal SR (2014) What’s fueling the biotech engine—2012 to 2013. Nat Biotechnol 32:32–39CrossRefPubMedGoogle Scholar
  2. Allen MJ, Boyce JP, Trentalange MT, Treiber DL, Rasmussen B, Tillotson B, Davis R, Reddy P (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100(6):1193–1204CrossRefPubMedGoogle Scholar
  3. Becker E, Florin L, Pfizenmaier K, Kaufmann H (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135(2):217–223CrossRefPubMedGoogle Scholar
  4. Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205(2):263–270CrossRefPubMedGoogle Scholar
  5. Burdakov D, Petersen OH, Verkhratsky A (2005) Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38(3):303–310CrossRefPubMedGoogle Scholar
  6. Chen F, Fan L, Wang J, Zhou Y, Ye Z, Zhao L, Tan WS (2012) Insight into the roles of hypoxanthine and thymidine on cultivating antibody-producing CHO cells: cell growth, antibody production and long-term stability. Appl Microbiol Biotechnol 93(1):169–178CrossRefPubMedGoogle Scholar
  7. Dreesen IA, Fussenegger M (2011) Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of Chinese hamster ovary cells. Biotechnol Bioeng 108(4):853–866CrossRefPubMedGoogle Scholar
  8. Du Z, Treiber D, McCarter JD, Fomina-Yadlin D, Saleem RA, McCoy RE, Zhang Y, Tharmalingam T, Leith M, Follstad BD, Dell B, Grisim B, Zupke C, Heath C, Morris AE, Reddy P (2015) Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnol Bioeng 112(1):141–155PubMedCentralCrossRefPubMedGoogle Scholar
  9. Florin L, Pegel A, Becker E, Hausser A, Olayioye MA, Kaufmann H (2009) Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells. J Biotechnol 141(1):84–90CrossRefPubMedGoogle Scholar
  10. Franěk F, Katinger H (2002) Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol Prog 18(1):155–158CrossRefPubMedGoogle Scholar
  11. Franěk F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Prog 16(5):688–692CrossRefPubMedGoogle Scholar
  12. Gupta AJ, Hageman JA, Wierenga PA, Boots J-W, Gruppen H (2014) Chemometric analysis of soy protein hydrolysates used in animal cell culture for IgG production—an untargeted metabolomics approach. Process Biochem 49(2):309–317CrossRefGoogle Scholar
  13. Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36(1-3):71–83PubMedCentralCrossRefPubMedGoogle Scholar
  14. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100(1):189–194CrossRefPubMedGoogle Scholar
  15. Kou TC, Fan L, Zhou Y, Ye ZY, Liu XP, Zhao L, Tan WS (2011) Detailed understanding of enhanced specific productivity in Chinese hamster ovary cells at low culture temperature. J Biosci Bioeng 111(3):365–369CrossRefPubMedGoogle Scholar
  16. Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture. Cytotechnology 53(1-3):33–46PubMedCentralCrossRefPubMedGoogle Scholar
  17. Lee CJ, Seth G, Tsukuda J, Hamilton RW (2009) A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnol Bioeng 102(4):1107–1118CrossRefPubMedGoogle Scholar
  18. Lee HW, Christie A, Starkey JA, Read EK, Yoon S (2014) Intracellular metabolic flux analysis of CHO cells supplemented with wheat hydrolysates for improved mAb production and cell-growth. J Chem Technol Biotechnol 90(2):291–302CrossRefGoogle Scholar
  19. Li B, Sirimuthu NMS, Ray BH, Ryder AG (2012) Using surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy for screening yeast extracts, a complex component of cell culture media. J Raman Spectrosc 43(8):1074–1082CrossRefGoogle Scholar
  20. Liu C-H, Chu I-M, Hwang S-M (2001) Pentanoic acid, a novel protein synthesis stimulant for Chinese hamster ovary (CHO) cells. J Biosci Bioeng 91(1):71–75CrossRefPubMedGoogle Scholar
  21. Lu C, Gonzalez C, Gleason J, Gangi J, Yang JD (2007) A T-flask based screening platform for evaluating and identifying plant hydrolysates for a fed-batch cell culture process. Cytotechnology 55(1):15–29PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318CrossRefPubMedGoogle Scholar
  23. Mendonca RZ, de Oliveira EC, Pereira CA, Lebrun I (2007) Effect of bioactive peptides isolated from yeastolate, lactalbumin and NZCase in the insect cell growth. Bioprocess Biosyst Eng 30(3):157–164CrossRefPubMedGoogle Scholar
  24. Michiels JF, Barbau J, De Boel S, Dessy S, Agathos SN, Schneider YJ (2011) Characterisation of beneficial and detrimental effects of a soy peptone, as an additive for CHO cell cultivation. Process Biochem 46(3):671–681CrossRefGoogle Scholar
  25. Mosser M, Kapel R, Aymes A, Bonanno L-M, Olmos E, Chevalot I, Marc I, Marc A (2012) Chromatographic fractionation of yeast extract: a strategy to identify physicochemical properties of compounds promoting CHO cell culture. Process Biochem 47(7):1178–1185CrossRefGoogle Scholar
  26. Mosser M, Chevalot I, Olmos E, Blanchard F, Kapel R, Oriol E, Marc I, Marc A (2013) Combination of yeast hydrolysates to improve CHO cell growth and IgG production. Cytotechnology 65(4):629–641PubMedCentralCrossRefPubMedGoogle Scholar
  27. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62(3):324–335CrossRefPubMedGoogle Scholar
  28. Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Method Enzymol 490:71–92CrossRefGoogle Scholar
  29. Proud CG (2009) mTORC1 signalling and mRNA translation. Biochem Soc Trans 37(1):227–231CrossRefPubMedGoogle Scholar
  30. Richardson J, Shah B, Bondarenko PV, Bhebe P, Zhang Z, Nicklaus M, Kombe MC (2015) Metabolomics analysis of soy hydrolysates for the identification of productivity markers of mammalian cells for manufacturing therapeutic proteins. Biotechnol Prog. doi: 10.1002/btpr.2050 PubMedGoogle Scholar
  31. Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim Y-G, Henry GW, Shadick NA, Weinblatt ME (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376(1):1–12CrossRefPubMedGoogle Scholar
  32. Ruggero D, Sonenberg N (2005) The Akt of translational control. Oncogene 24(50):7426–7434CrossRefPubMedGoogle Scholar
  33. Schlatter S, Senn C, Fussenegger M (2003) Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Biotechnol Bioeng 83(2):210–225CrossRefPubMedGoogle Scholar
  34. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  35. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322PubMedCentralCrossRefPubMedGoogle Scholar
  36. Shen AY, Van de Goor J, Zheng L, Reyes AE, Krummen LA, Ozturk S, Hu W (2006) Recombinant DNA technology and cell line development. Biotechnol Biprocess Ser 30:15–40Google Scholar
  37. Sommer R (1998) Yeast extracts: production, properties and components. Food Aust 50(4):181–183Google Scholar
  38. Sung YH, Lim SW, Chung JY, Lee GM (2004) Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Appl Microbiol Biotechnol 63(5):527–536CrossRefPubMedGoogle Scholar
  39. Sunley K, Butler M (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 28(3):385–394CrossRefPubMedGoogle Scholar
  40. Svennerholm L (1957) Quantitive estimation of sialic acids: II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611CrossRefPubMedGoogle Scholar
  41. Wilkins J, Shiratori MK, Breece T (2009) Biologically active c-terminal arginine-containing peptides. United States Patent. US 2009/0143248 A1Google Scholar
  42. Yang WC, Lu J, Nguyen NB, Zhang A, Healy NV, Kshirsagar R, Ryll T, Huang YM (2014) Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Mol Biotechnol 56(5):421–428CrossRefPubMedGoogle Scholar
  43. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298CrossRefPubMedGoogle Scholar
  44. Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F (2011) Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 108(5):1078–1088CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dongdong Hu
    • 1
  • Yating Sun
    • 1
  • Xuping Liu
    • 1
  • Jintao Liu
    • 1
  • Xintao Zhang
    • 1
  • Liang Zhao
    • 1
  • Haibin Wang
    • 2
  • Wen-Song Tan
    • 1
    Email author
  • Li Fan
    • 1
    Email author
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Zhejiang Hisun Pharmaceutical Co., Ltd.HangzhouChina

Personalised recommendations