Skip to main content

Advertisement

Log in

Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiol-SGM 150:2029–2035

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butler D (2013) Fungus threatens top banana. Nature 504(7479):195–196

    Article  CAS  PubMed  Google Scholar 

  • Cagas SE, Jain MR, Li H, Perlin DS (2011) The proteomic signature of Aspergillus fumigatus during early development. Mol Cell Proteomics 10(11):M111.010108

    Article  PubMed Central  PubMed  Google Scholar 

  • Chong PK, Gan CS, Pham TK, Wright PC (2006) Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections. J Proteome Res 5(5):1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48(1):4–14

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    Article  PubMed Central  PubMed  Google Scholar 

  • DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae—purification, kinetic properties, and physiological roles. J Biol Chem 276(47):43775–43783

    Article  CAS  PubMed  Google Scholar 

  • D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, McKain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  • Doyle S (2011) Fungal proteomics: from identification to function. FEMS Microbiol Lett 321(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Du YX, Yang XJ, Ruan HC, Zhu CY, Chen FR (2008) Toxicity tests of several fungicides and their mixtures to Fusarium oxysporum. Agrochemicals 47(10):764–766

    CAS  Google Scholar 

  • Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I (2009) Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiol-SGM 155:3166–3175

    Article  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Urban M, Parker JE, Brewer HC, Kelly SL, Hammond-Kosack KE, Fraaije BA, Liu X, Cools HJ (2013) Characterization of the sterol 14 α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytol 198(3):821–835

    Article  CAS  PubMed  Google Scholar 

  • Feng HX, Li X, Niu DD, Chen WN (2010) Protein profile in HBx transfected cells: a comparative iTRAQ-coupled 2D LC-MS/MS analysis. J Proteomics 73(8):1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin JY, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gan CS, Chong PK, Pham TK, Wright PC (2007) Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 6(2):821–827

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Velic A, Macek B, Lundberg E, Kampf C, Nagaraj N, Uhlen M, Cox J, Mann M (2013) Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol Cell Proteomics 12(6):1709–1722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geijer C, Pirkov I, Vongsangnak W, Ericsson A, Nielsen J, Krantz M, Hohmann S (2012) Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics 13(1):554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12(5):541–553

    Article  CAS  PubMed  Google Scholar 

  • González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527. doi:10.1155/2010/932527

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1(4):323–333

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36(1):19–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph-Strauss D, Zenvirth D, Simchen G, Barkai N (2007) Spore germination in Saccharomyces cerevisiae: global gene expression patterns and cell cycle landmarks. Genome Biol 8(11):R241

    Article  PubMed Central  PubMed  Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 110(48):19324–19329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kongtragoul P, Nalumpang S, Miyamoto Y, Izumi Y, Akimitsu K (2011) Mutation at codon 198 of TUB2 gene for carbendazim resistance in Colletotrichum gloeosporioides causing mango anthracnose in Thailand. J Plant Protection Res 51(4):377–383

    Article  CAS  Google Scholar 

  • Lan P, Li W, Schmidt W (2012) Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics 11(11):1156–1166

    Article  PubMed Central  PubMed  Google Scholar 

  • Leng WC, Liu T, Li R, Yang J, Wei CD, Zhang WL, Jin Q (2008) Proteomic profile of dormant Trichophyton rubrum conidia. BMC Genomics 9:303. doi:10.1186/1471-2164-9-303

    Article  PubMed Central  PubMed  Google Scholar 

  • Lepesheva GI, Waterman MR (2007) Sterol 14 α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. BBA-Gen Subj 1770(3):467–477

    Article  CAS  Google Scholar 

  • Li Y, Jiang H, Du X, Huang X, Zhang X, Xu Y, Xu Y (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G. Bioresour Technol 101(10):3649–3656

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T, Yi GJ (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp cubense tropical race 4. BMC Genomics 13:374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, Chen L, Peng J, Ma L, Dong J, Xu X, Xue Y, Zhu Y, Zhang W, Yang L, Li W, Sun L, Wan Z, Ding G, Yu F, Tu K, Qian Z, Li R, Shen Y, Li Y, Jin Q (2007) The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics 8:100

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, Algenas C, Lundeberg J, Mann M, Uhlen M (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S, Mann M (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548

    Article  PubMed Central  PubMed  Google Scholar 

  • Oh Y, Donofrio N, Pan HQ, Coughlan S, Brown DE, Meng SW, Mitchell T, Dean RA (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9(5):R85. doi:10.1186/gb-2008-9-5-r85

    Article  PubMed Central  PubMed  Google Scholar 

  • Oh YT, Ahn CS, Kim JG, Ro HS, Lee CW, Kim JW (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47(3):246–253

    Article  CAS  PubMed  Google Scholar 

  • Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96(6):653–656

    Article  PubMed  Google Scholar 

  • Redding AM, Mukhopadhyay A, Joyner DC, Hazen TC, Keasling JD (2006) Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomic Proteomic 5(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Roldán MC, Köhli M, Roncero MI, Philippsen P, Di Pietro A, Espeso EA (2010) Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryot Cell 9(8):1216–1224

    Article  PubMed Central  PubMed  Google Scholar 

  • Seong K-Y, Zhao X, Xu J-R, Güldener U, Kistler HC (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45(4):389–399

    Article  CAS  PubMed  Google Scholar 

  • Siegel MR (1981) Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis 65:986–989

    Article  CAS  Google Scholar 

  • Smith MK, Hamill SD, Langdon PW, Giles JE, Doogan VJ, Pegg KG (2006) Towards the development of a Cavendish banana resistant to race 4 Fusarium wilt: gamma irradiation of micropropagated Dwarf Parfitt (Musa spp., AAA group, Cavendish subgroup). Aust J Exp Agric 46:7

    Article  Google Scholar 

  • Suh MJ, Fedorova ND, Cagas SE, Hastings S, Fleischmann RD, Peterson SN, Perlin DS, Nierman WC, Pieper R, Momany M (2012) Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus fumigatus conidial proteome. Proteome Sci 10(1):30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun JL, Qi JS (2014) Pesticide application technology books. Chemical Industry Press, Beijing

    Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29(1):22–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinf 4:41. doi:10.1186/1471-2105-4-41

    Article  Google Scholar 

  • Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ (2008) Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8(11):2256–2265

    Article  CAS  PubMed  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56(4):908–912

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turner J (2012) The pesticide manual: a world compendium, 16th edn. The British Crop Protection Council, Hampshire

    Google Scholar 

  • Van Den Berg N, Berger DK, Hein I, Birch PRJ, Wingfield MJ, Viljoen A (2007) Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Mol Plant Pathol 8(3):333–341

    Article  Google Scholar 

  • Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, Shen Y, Monroe ME, Lopez-Ferrer D, Reno T, Moore RJ, Klemke RL, Camp DG 2nd, Smith RD (2011) Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11(10):2019–2026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J (2013) The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics. Mol Cell Proteomics 12(5):1363–1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  CAS  PubMed  Google Scholar 

  • Weete JD, Abril M, Blackwell M (2010) Phylogenetic distribution of fungal sterols. PLoS One 5(5):e10899

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiederhold E, Veenhoff LM, Poolman B, Slotboom DJ (2010) Proteomics of Saccharomyces cerevisiae organelles. Mol Cell Proteomics 9(3):431–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011a) Fungicide: modes of action and possible impact on nontarget microorganisms. ISRN Ecol 2011:130289. doi:10.5402/2011/130289

    Google Scholar 

  • Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L (2011b) Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Proteome Res 10(10):4647–4660

    Article  CAS  PubMed  Google Scholar 

  • Yang QS, Wu JH, Li CY, Wei YR, Sheng O, Hu CH, Kuang RB, Huang YH, Peng XX, McCardle JA, Chen W, Yang Y, Rose JK, Zhang S, Yi GJ (2012) Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Mol Cell Proteomics 11(12):1853–1869

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshida Y (1993) Lanosterol 14 α-demethylase (cytochrome P45014DM). Handb Exp Pharmacol 105:627–639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. U1131004, the National High-Tech R&D Program (863 Program) No. 2011AA10020602, 948 Project from the Ministry of Agriculture of China No. 2011-G16, Science and Technology Plan Project of Guangdong Province No. 2011A020201006, and the Pearl River S&T Nova Program of Guangzhou No. 2013J2200081. The authors would like to thank Professor Lai-Liang Cheng and Dr Ted Thannhauser for their critical reading of this manuscript and helpful discussion.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Zhang or Gan-Jun Yi.

Additional information

Gui-Ming Deng and Qiao-Song Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 9330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, GM., Yang, QS., He, WD. et al. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Appl Microbiol Biotechnol 99, 7189–7207 (2015). https://doi.org/10.1007/s00253-015-6768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6768-x

Keywords

Navigation