Skip to main content
Log in

Transcriptional remodeling in response to transfer upon carbon-limited or metformin-supplemented media in S. cerevisiae and its effect on chronological life span

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the factors affecting chronological life span (CLS) in budding yeast is nutrient, especially carbon limitation. Aside from metabolites in the growth medium such as glucose, amino acids, and acetic acid, many pharmaceuticals have also been proven to alter CLS. Besides their impact on life span, these drugs are also prospective chemicals to treat the age-associated diseases, so the identification of their action mechanism and their potential side effects is of crucial importance. In this study, the effects of caloric restriction and metformin, a dietary mimetic pharmaceutical, on yeast CLS are compared. Saccharomyces cerevisiae cells grown in synthetic dextrose complete (SDC) up to mid-exponential phase were either treated with metformin or were subjected to glucose limitation. The impacts of these perturbations were analyzed via transcriptomics, and the common (stimulation of glucose uptake, induction of mitochondrial maintenance, and reduction of protein translation) and divergent (stimulation of aerobic respiration and reprogramming of respiratory electron transport chain (ETC)) cellular responses specific to each treatment were determined. These results revealed that both glucose limitation and metformin treatment stimulate CLS extension and involve the mitochondrial function, probably by creating an efficient mitochondria-to-nucleus signaling of either aerobic respiration or ETC signaling stimulation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander MA, Jeffries TW (1990) Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzym Microb Technol 12(1):2–19

    Article  CAS  Google Scholar 

  • Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, Viollet B, Ferbeyre G, Pollak MN (2012) Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 5:536–543

    Article  CAS  Google Scholar 

  • Andzejewski S, Gravel SP, Pollak M, St-Pierre J (2014) Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2:12

    Article  Google Scholar 

  • Aris JP, Fishwick LK, Marraffini ML, Seo AY, Leeuwenburgh C, Dunn WA (2012) Amino acid homeostasis and chronological longevity in Saccharomyces cerevisiae. Subcell Biochem 57:161–186

    Article  CAS  PubMed  Google Scholar 

  • Avila MA, Carretero MV, Rodriguez EN, Mato JM (1998) Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Gastroenterology 114(2):364–371

    Article  CAS  PubMed  Google Scholar 

  • Bailey C, Day C (2004) Metformin: its botanical background. Pract Diab Int 21(3):115–117

    Article  Google Scholar 

  • Bandhakavi S, Xie H, O’Callaghan B, Sakurai H, Kim D-H, Griffin TJ (2008) Hsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis. PLoS One 3(2): e1598

  • Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):10

    Article  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279(48):49883–49888

    Article  CAS  PubMed  Google Scholar 

  • Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2(7):e88

  • Ben Sahra I, Le Marchand-Brustel Y, Tanti J-F, Bost F (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9(5):1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti J-F, Giorgetti-Peraldi S, Bost F (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71(13):4366–4372

    Article  CAS  PubMed  Google Scholar 

  • Blackburn AS, Avery SV (2003) Genome-wide screening of Saccharomyces cerevisiae to identify genes required for antibiotic insusceptibility of eukaryotes. Antimicrob Agents Chemother 47(2):676–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5(4):265–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene NDE, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cankorur-Cetinkaya A, Eraslan S, Kirdar B (2013) Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae. Mol BioSyst 9(11):2889–2908

    Article  CAS  PubMed  Google Scholar 

  • Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, Miethke M (2010) Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in in Bacillus subtilis. J Bacteriol 192(10):2512–2524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ (2006) Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab 291(1):E182–E189

    Article  CAS  PubMed  Google Scholar 

  • Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81(11):4059–4067

    CAS  PubMed  Google Scholar 

  • De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38(9):1476–1481

    Article  PubMed  Google Scholar 

  • Dhahbi JM, Mote PL, Fahy GM, Spindler SR (2005) Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics 23(3):343–350

    Article  CAS  PubMed  Google Scholar 

  • Dong K, Addinall SG, Lydall D, Rutherford JC (2013) The yeast copper response is regulated by DNA damage. Mol Cell Biol 33(20):4041–4050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812

    Article  CAS  PubMed  Google Scholar 

  • Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ (Clin Res ed) 330(7503):1304–1305

    Article  Google Scholar 

  • Fischer Y, Thomas J, Rösen P, Kammermeier H (1995) Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology 136(2):412–420

  • Fischer M, Timper K, Radimerski T, Dembinski K, Frey DM, Zulewski H, Keller U, Müller B, Christ-Crain M, Grisouard J (2010) Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots. Diabetes Obes Metab 12(4):356–359

  • Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, Lollini PL, Picci P, Scotlandi K (2013) Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One 8(12): e83832

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip Data at the probe level. Bioinformatics 20(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Gleason JE, Corrigan DJ, Cox JE, Reddi AR, McGinnis LA, Culotta VC (2011) Analysis of hypoxia and hypoxia-like states through metabolite profiling. PLoS One 6(9): e24741

  • González Siso MI, Becerra M, Lamas Maceiras M, Vizoso Vázquez A, Cerdán ME (2012) The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnol Lett 34(12):2161–2173

    Article  PubMed  Google Scholar 

  • Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, Leverve X (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382(3):877–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halicka HD, Zhao H, Li J, Traganos F, Zhang S, Lee M, Darzynkiewicz Z (2011) Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling. Aging (Albany NY) 3(10):1028–1038

    CAS  Google Scholar 

  • Hansen SH, McCormack JG (2002) Application of 13C-filtered 1H NMR to evaluate drug action on gluconeogenesis and glycogenolysis simultaneously in isolated rat hepatocytes. NMR Biomed 15(5):313–319

    Article  CAS  PubMed  Google Scholar 

  • Hart RW, Turturro A (1997) Dietary restrictions and cancer. Environ Health Perspect 105:989–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137(4):635–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JE, Johnson FB (2014) Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells. PLoS One 9(5): e97729

  • Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Guan KL (2011) Amino acid signaling in TOR activation. Annu Rev Biochem 80:1001–1032

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Jung YS, Moon CH, Lee SH, Baik EJ, Moon CK (2003) High-glucose induced protective effect against hypoxic injury is associated with maintenance of mitochondrial membrane potential. Jpn J Physiol 53(6):451–459

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Dey CS (2002) Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. Br J Pharmacol 137(3):329–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar A, John L, Maity S, Manchanda M, Sharma A, Saini N, Chakraborty K, Sengupta S (2011) Converging evidence of mitochondrial dysfunction in a yeast model of homocysteine metabolism imbalance. J Biol Chem 286(24):21779–21795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwast KE, Burke PV, Staahl BT, Poyton RO (1999) Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. PNAS 96(10):5446–5451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, Jamnig A, Trimmel D, Herndler-Brandstetter D, Brunner S, Zenzmaier C, Sampson N, Breitenbach M, Fröhlich KU, Grubeck-Loebenstein B, Berger P, Wieser M, Grillari-Voglauer R, Thallinger GG, Grillari J, Trajanoski Z, Madeo F, Lepperdinger G, Jansen-Dürr P (2010) Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell 9(6):1084–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leontieva OV, Blagosklonny MV (2011) Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression. Aging 3(11):1078–1091

    PubMed Central  PubMed  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. PNAS 98(1):31–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae K, McDougall G, Wang H-H, Xue L, Jiang H, Sakamoto K, Prescott AR, Rena G (2012) Cellular responses to the metal-binding properties of metformin. Diabetes 61(6):1423–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38(7):807–811

    Article  CAS  PubMed  Google Scholar 

  • Lowy DR, Willumsen BM (1993) Function and regulation of Ras. Annu Rev Biochem 62:851–891

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JW (2008) Affycoretools: functions useful for those doing repetitive analyses with Affymetrix GeneChips. R package version 1.28.0

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. PNAS 106(20):8344–8349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab 1(6):393–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6(4):e1000921

  • Matuo R, Sousa FG, Soares DG, Bonatto D, Saffi J, Escargueil AE, Larsen AK, Henriques JAP (2012) Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 70(4):491–502

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Cufí S, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Vellon L, Vazquez-Martin A (2011) Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging (Albany NY) 3(11):1063–1077

    CAS  Google Scholar 

  • Meynet O, Ricci JE (2014) Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med 20(8):419–427

    Article  CAS  PubMed  Google Scholar 

  • Moler EJ, Radisky DC, Mian IS (2000) Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics 4(2):127–135

    CAS  PubMed  Google Scholar 

  • Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Bio Sci Med Sci 63(2):113–121

    Article  Google Scholar 

  • Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA (2013) Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 134(9):381–390

    Article  CAS  PubMed  Google Scholar 

  • Natali A, Ferrannini E (2006) Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49(3):434–441

    Article  CAS  PubMed  Google Scholar 

  • Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. Elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):13

    Article  Google Scholar 

  • Ota S, Horigome K, Ishii T, Nakai M, Hayashi K, Kawamura T, Kishino A, Taiji M, Kimura T (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316

    Article  CAS  PubMed  Google Scholar 

  • Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(3):607–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Y (2011) Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol 46(11):6–11

  • Postmus J, Tuzun I, Bekker M, Müller WH, de Mattos MJ, Brul S, Smits GJ (2011) Dynamic regulation of mitochondrial respiratory chain efficiency in Saccharomyces cerevisiae. Microbiology 157(12):3500–3511

    Article  CAS  PubMed  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10(4):987–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powers 3rd RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reimand J, Arak T, Vilo J (2011) g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39:W307–W315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rintala E, Jouhten P, Toivari M, Wiebe MG, Maaheimo H, Penttilä M, Ruohonen L (2011) Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS 15(7–8):461–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosilio C, Ben-Sahra I, Bost F, Peyron JF (2014) Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Lett 346(2):188–196

    Article  CAS  PubMed  Google Scholar 

  • Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, Stekovic S, Gleixner C, Schmid C, Klug L, Sorgo AG, Eisenberg T, Büttner S, Marino G, Koziel R, Janser-Dürr P, Fröhlich KU, Kroemer G, Madeo F (2014) Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet 10(5): e1004347

  • Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R, Winge DR (2005) Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280(11):10135–10140

    Article  CAS  PubMed  Google Scholar 

  • Saeedi R, Parsons HL, Wambolt RB, Paulson K, Sharma V, Dyck JRB, Brownsey RW, Allard MF (2008) Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms. Am J Physiol Heart Circ Physiol 294(6):H2497–H2506

    Article  CAS  PubMed  Google Scholar 

  • Sajan MP, Bandyopadhyay G, Miura A, Standaert ML, Nimal S, Longnus SL, Van Obberghen E, Hainault I, Foufelle F, Kahn R, Braun U, Leitges M, Farese RV (2010) AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Am J Physiol Endocrinol Metab 298(2):E179–E192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sequea DA, Sharma N, Arias EB, Cartee GD (2012) Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci 67(12):1279–1285

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith DL, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the sirtuins. Aging Cell 6(5):649–662

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Elam CF, Mattison JA, Lane MA, Roth GS, Ingram DK, Allison DB (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol A Biol Sci Med Sci 65(5):468–474

    Article  PubMed  Google Scholar 

  • Sorrentino JA, Sanoff HK, Sharpless NA (2014) Defining the toxicology of aging. Trends Mol Med 20(7):375–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  CAS  PubMed  Google Scholar 

  • Tahara EB, Cunha FM, Basso TO, Della Bianca BE, Gombert AK, Kowaltowski AJ (2013) Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism. PLoS One 8(2):e56388

  • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. PNAS 104(7):2402–2407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1):e13

  • Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5(5):e1000467

  • Werner EA, Bell J (1922) The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J Chem Soc Trans 121:1790

    Article  CAS  Google Scholar 

  • Wheaton WW, Chandel NS (2011) Hypoxia 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 300(3):C385–C393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM (2013) Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc Drugs Ther 27(1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Wile DJ, Toth C (2010) Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care 33(1):156–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu N, Gu C, Gu H, Hu H, Han Y, Li Q (2011) Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58(6):482–490

    Article  CAS  PubMed  Google Scholar 

  • Wu CL, Qiang L, Han W, Ming M, Viollet B, He YY (2013) Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene 32(21):2682–2689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Boğaziçi Research Fund through project 5681 and also by the Scientific and Technological Research Council of Turkey through project 110M428. We thank Prof. Stephen G. Oliver and Dr. Pınar Pir for providing the yeast strains.

Ethical statement

The manuscript does not contain experiments using animals. The manuscript also does not contain human studies.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Borklu-Yucel.

Electronic supplementary material

ESM 1

(PDF 1165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borklu-Yucel, E., Eraslan, S. & Ulgen, K.O. Transcriptional remodeling in response to transfer upon carbon-limited or metformin-supplemented media in S. cerevisiae and its effect on chronological life span. Appl Microbiol Biotechnol 99, 6775–6789 (2015). https://doi.org/10.1007/s00253-015-6728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6728-5

Keywords

Navigation