Applied Microbiology and Biotechnology

, Volume 99, Issue 20, pp 8667–8680 | Cite as

PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

  • Jun Ding
  • Garrett Holzwarth
  • C. Samuel Bradford
  • Ben Cooley
  • Allen S. Yoshinaga
  • Jana Patton-Vogt
  • Hagai Abeliovich
  • Michael H. Penner
  • Alan T. Bakalinsky
Applied microbial and cell physiology

Abstract

In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.

Keywords

Saccharomyces cerevisiae Yeast Acetic acid PEP3 V-ATPase HOPS CORVET Vacuole STM1 PEP5 

Supplementary material

253_2015_6708_MOESM1_ESM.pdf (896 kb)
ESM 1(PDF 895 kb)

References

  1. Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279:4498–4506CrossRefPubMedGoogle Scholar
  2. Arlt H, Perz A, Ungermann C (2011) An overexpression screen in Saccharomyces cerevisiae identifies novel genes that affect endocytic protein trafficking. Traffic 12:1592–1603CrossRefPubMedGoogle Scholar
  3. Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants Eur. J Biochem 270:3189–3195Google Scholar
  4. Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes–coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316CrossRefPubMedGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Coonrod EM, Graham LA, Carpp LN, Carr TM, Stirrat L, Bowers K, Stevens TH (2013) Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain. Dev Cell 27:462–468PubMedCentralCrossRefPubMedGoogle Scholar
  7. Diakov TT, Tarsio M, Kane PM (2013) Measurement of vacuolar and cytosolic pH in vivo in yeast cell suspensions. J Vis Exp 74, e50261. doi:10.3791/50261 Google Scholar
  8. Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Bakalinsky AT (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97:7405–7416CrossRefPubMedGoogle Scholar
  9. Eraso P, Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224:187–192CrossRefPubMedGoogle Scholar
  10. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360CrossRefPubMedGoogle Scholar
  11. Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602CrossRefPubMedGoogle Scholar
  12. Hönscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30:86–94CrossRefPubMedGoogle Scholar
  13. Hueso G, Aparicio-Sanchis R, Montesinos C, Lorenz S, Murguía JR, Serrano R (2012) A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem J 441:255–264CrossRefPubMedGoogle Scholar
  14. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265PubMedCentralCrossRefPubMedGoogle Scholar
  15. Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J, Prelich G (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat Methods 5:239–241CrossRefPubMedGoogle Scholar
  16. Kawahata M, Masaki K, Fujii T, Lefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936CrossRefPubMedGoogle Scholar
  17. Kellermayer R, Aiello DP, Miseta A, Bedwell DM (2003) Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1∆ mutant of S. cerevisiae. J Cell Sci 116:1637–1646CrossRefPubMedGoogle Scholar
  18. Lawrence CL, Botting CH, Antrobus R, Coote PJ (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24:3307–3323PubMedCentralCrossRefPubMedGoogle Scholar
  19. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663PubMedCentralCrossRefPubMedGoogle Scholar
  20. Martínez-Muñoz GA, Kane PM (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319PubMedCentralCrossRefPubMedGoogle Scholar
  21. Michaillat L, Baars TL, Mayer A (2012) Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895PubMedCentralCrossRefPubMedGoogle Scholar
  22. Mira NP, Teixeira MC, Sá-Correia I (2010) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14:525–540PubMedCentralCrossRefPubMedGoogle Scholar
  23. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456PubMedCentralCrossRefPubMedGoogle Scholar
  24. Nakamura N, Hirata A, Ohsumi Y, Wada Y (1997) Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J Biol Chem 272:11344–11349CrossRefPubMedGoogle Scholar
  25. Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci 87:3503–3507PubMedCentralCrossRefPubMedGoogle Scholar
  26. Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387:199–202CrossRefPubMedGoogle Scholar
  27. Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y (1991) Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet phenotype are ascribable to defects of vacuolar membrane H+-ATPase activity. J Biol Chem 266:13971–13977PubMedGoogle Scholar
  28. Padilla-López S, Pearce DA (2006) Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J Biol Chem 281:10273–10280CrossRefPubMedGoogle Scholar
  29. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  30. Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197CrossRefPubMedGoogle Scholar
  31. Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C (2007) The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 1:739–750CrossRefGoogle Scholar
  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCentralCrossRefPubMedGoogle Scholar
  33. Plant PJ, Manolson MF, Grinstein S, Demaurex N (1999) Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem 274:37270–37279CrossRefPubMedGoogle Scholar
  34. Preston RA, Murphy RF, Jones EW (1989) Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci 86:7027–7031PubMedCentralCrossRefPubMedGoogle Scholar
  35. Price A, Seals D, Wickner W, Ungermann C (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a Cis-snare complex to a Rab/Ypt protein. J Cell Biol 148:1231–1238PubMedCentralCrossRefPubMedGoogle Scholar
  36. Schauer A, Knauer H, Ruckenstuhl C, Fussi H, Durchschlag M, Potocnik U, Fröhlich KU (2009) Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545CrossRefPubMedGoogle Scholar
  37. Schumacher K, Krebs M (2010) The V-ATPase: small cargo, large effects. Curr Opin Plant Biol 13:724–730CrossRefPubMedGoogle Scholar
  38. Smith MR, Boenzli MG, Hindagolla V, Ding J, Miller JM, Hutchison JE, Bakalinsky AT (2013) Identification of gold nanoparticle-resistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity. Appl Environ Microbiol 79:728–733PubMedCentralCrossRefPubMedGoogle Scholar
  39. Sobanski MA, Dickinson JR (1995) A simple method for the direct extraction of plasmid DNA from yeast. Biotechnol Tech 9:225–230CrossRefGoogle Scholar
  40. Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S (2012) Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113:421–430CrossRefPubMedGoogle Scholar
  41. Swinnen S, Fernández Niño M, González-Ramos D, van Maris AJA, Nevoigt E (2014) The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res 14:642–653CrossRefPubMedGoogle Scholar
  42. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282:5617–5624CrossRefPubMedGoogle Scholar
  43. Van Dyke N, Baby J, Van Dyke MW (2006) STM1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J Mol Biol 358:1023–1031CrossRefPubMedGoogle Scholar
  44. Van Dyke N, Chanchorn E, Van Dyke MW (2013) The Saccharomyces cerevisiae protein STM1p facilitates ribosome preservation during quiesence. Biochem Biophys Res Commun 430:745–750CrossRefPubMedGoogle Scholar
  45. Weisman LS (2003) Yeast vacuole inheritance and dynamics. Annu Rev Genet 37:435–460CrossRefPubMedGoogle Scholar
  46. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136CrossRefPubMedGoogle Scholar
  47. Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT (1994) Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet 25:488–496CrossRefPubMedGoogle Scholar
  48. Zieger M, Mayer A (2012) Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol Biol Cell 23:3438–3449PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun Ding
    • 1
    • 2
  • Garrett Holzwarth
    • 2
    • 3
  • C. Samuel Bradford
    • 4
  • Ben Cooley
    • 5
  • Allen S. Yoshinaga
    • 2
    • 3
  • Jana Patton-Vogt
    • 5
  • Hagai Abeliovich
    • 6
  • Michael H. Penner
    • 2
  • Alan T. Bakalinsky
    • 1
    • 2
    • 3
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA
  2. 2.Department of Food Science and TechnologyOregon State UniversityCorvallisUSA
  3. 3.Department of MicrobiologyOregon State UniversityCorvallisUSA
  4. 4.Department of Environmental & Molecular ToxicologyOregon State UniversityCorvallisUSA
  5. 5.Biological SciencesDuquesne UniversityPittsburghUSA
  6. 6.Department of Biochemistry and Food ScienceHebrew UniversityRehovotIsrael

Personalised recommendations