Skip to main content
Log in

Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Formate dehydrogenases (FDHs) are considered particularly useful enzymes in biocatalysis when the regeneration of the cofactor NAD(P)H is required, that is, in chiral synthesis with dehydrogenases. Their utilization is however limited to the recycling of NAD+, since all (apart one) of the FDHs characterized so far are strictly specific for this cofactor, and this is a major drawback for their otherwise wide applicability. Despite the many attempts performed to modify cofactor specificity by protein engineering different NAD+-dependent FDHs, in the general practice, glucose or phosphite dehydrogenases are chosen for the recycling of NADP+. We report on the functional and structural characterization of a new FDH, GraFDH, identified by mining the genome of the extremophile prokaryote Granulicella mallensis MP5ACTX8. The new enzyme displays a valuable stability in the presence of many organic cosolvents as well as double cofactor specificity, with NADP+ preferred over NAD+ at acidic pH values, at which it also shows the highest stability. The quite low affinities for both cofactors as well as for the substrate formate indicate, however, that the native enzyme requires optimization to be applied as biocatalytic tool. We also determined the crystal structure of GraFDH both as apoprotein and as holoprotein, either in complex with NAD+ or NADP+. Noticeably, the latter represents the first structure of an FDH enzyme in complex with NADP+. This fine picture of the structural determinants involved in cofactor selectivity will possibly boost protein engineering of the new enzyme or other homolog FDHs in view of their biocatalytic exploitation for NADP+ recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L, Kapral GJ, Grosse-Kunstleve RW (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alekseeva A, Savin S, Tishkov V (2011) NAD-dependent formate dehydrogenase from plants. Acta Nat 3:38–54

  • Andreadeli A, Platis D, Tishkov V, Popov V, Labrou NE (2008) Structure‐guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP. FEBS J 275:3859–3869

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Schwarm M, Stingl K, Kottenhahn M, Huthmacher K, Drauz K (1995) Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron Asymmetry 6:2851–2888

    Article  CAS  Google Scholar 

  • Emsley P, Lohkamp B, Scott W, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericsson UB, Hallberg BM, DeTitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  CAS  PubMed  Google Scholar 

  • Evans P (2005) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72–82

    Article  PubMed  Google Scholar 

  • Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook JJ (2001) A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP. Biotechnol Lett 23:283–287

    Article  CAS  Google Scholar 

  • Hatrongjit R, Packdibamrung K (2010) A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: screening, purification and characterization. Enzym Microb Technol 46:557–561

    Article  CAS  Google Scholar 

  • Hoelsch K, Sührer I, Heusel M, Weuster-Botz D (2013) Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biotechnol 97:2473–2481

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Kawano Y, Urano M, Okabe A (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS One 8: e71581

  • Johannes TW, Woodyer RD, Zhao H (2007) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26

    Article  CAS  PubMed  Google Scholar 

  • Kaswurm V, Hecke WV, Kulbe KD, Ludwig R (2013) Guidelines for the application of NAD(P)H regenerating glucose dehydrogenase in synthetic processes. Adv Synth Catal 355:1709–1714

    Article  CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  • Lamzin VS, Dauter Z, Popov VO, Harutyunyan EH, Wilson KS (1994) High resolution structures of holo and apo formate dehydrogenase. J Mol Biol 236:759–785

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavinder JJ, Hari SB, Sullivan BJ, Magliery TJ (2009) High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J Am Chem Soc 131:3794–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol 62:2097–2106

    Article  PubMed  Google Scholar 

  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov VO, Lamzin VS (1994) NAD+-dependent formate dehydrogenase. Biochem J 301(Pt 3):625–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat SR, Männistö MK, Starovoytov V, Goodwin L, Nolan M, Hauser LJ, Land M, Davenport KW, Woyke T, Häggblom MM (2013) Complete genome sequence of Granulicella mallensis type strain MP5ACTX8T, an acidobacterium from tundra soil. Stand Genomic Sci 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Relyea HA, Vrtis JM, Woodyer R, Rimkus SA, van der Donk WA (2005) Inhibition and pH dependence of phosphite dehydrogenase. Biochemistry 44:6640–6649

    Article  CAS  PubMed  Google Scholar 

  • Sadykhov E, Serov A, Voinova N, Uglanova S, Petrov A, Alekseeva A, Kleimenov SY, Popov V, Tishkov V (2006) A comparative study of the thermal stability of formate dehydrogenases from microorganisms and plants. Appl Biochem Microbiol 42:236–240

    Article  CAS  Google Scholar 

  • Schirwitz K, Schmidt A, Lamzin VS (2007) High-resolution structures of formate dehydrogenase from Candida boidinii. Protein Sci 16:1146–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serov A, Popova A, Fedorchuk V, Tishkov V (2002) Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem J 367:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabalin I, Filippova E, Polyakov K, Sadykhov E, Safonova T, Tikhonova T, Tishkov V, Popov V (2009) Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft. Acta Crystallogr D Biol Crystallogr 65:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Tishkov V, Popov V (2004) Catalytic mechanism and application of formate dehydrogenase. Biochem Mosc 69:1252–1267

    Article  CAS  Google Scholar 

  • Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89–110

    Article  CAS  PubMed  Google Scholar 

  • Weckbecker A, Groger H, Hummel V (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 120:195–242

    CAS  PubMed  Google Scholar 

  • Wong C, Drueckhammer DG, Sweers HM (1985) Enzymatic vs. fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J Am Chem Soc 107:4028–4031

    Article  CAS  Google Scholar 

  • Woodyer R, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    Article  CAS  PubMed  Google Scholar 

  • Wu JT, Wu LH, Knight JA (1986) Stability of NADPH: effect of various factors on the kinetics of degradation. Clin Chem 32:314–319

    CAS  PubMed  Google Scholar 

  • Wu W, Zhu D, Hua L (2009a) Site-saturation mutagenesis of formate dehydrogenase from Candida boidinii creating effective NADP+-dependent FDH enzymes. J Mol Catal B 61:157–161

    Article  CAS  Google Scholar 

  • Wu X, Wang L, Wang S, Chen Y (2009b) Stereoselective introduction of two chiral centers by a single diketoreductase: an efficient biocatalytic route for the synthesis of statin side chains. Amino Acids 39:305–308

Download references

Acknowledgments

This work has been financed by an Assegno di Ricerca (CPDR095797/09) from the University of Padova (Italy) to S. Fogal and by a grant from Fabbrica Italiana Sintetici-F.I.S. S.p.A. (Montecchio Maggiore, Vicenza; Italy) to E. Bergantino.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Cendron or Elisabetta Bergantino.

Additional information

Stefano Fogal and Elisa Beneventi contributed equally to the work.

Electronic supplementary material

ESM 1

(PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogal, S., Beneventi, E., Cendron, L. et al. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8. Appl Microbiol Biotechnol 99, 9541–9554 (2015). https://doi.org/10.1007/s00253-015-6695-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6695-x

Keywords

Navigation