Applied Microbiology and Biotechnology

, Volume 99, Issue 12, pp 4943–4951 | Cite as

Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential

  • Daniel J. Spakowicz
  • Scott A. Strobel


Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.


Biofuels Filamentous fungi Terpene cyclase Polketide synthase Volatile organic compounds Hydrocarbons 



The authors were supported by the Office of Assistant Secretary of Defense for Research and Engineering NSSEFF grant N00244-09-1-0070 awarded to SAS.

Conflict of interest

The authors declare that they have no competing interests.


  1. Agger S, Lopez-Gallego F, Schmidt-Dannert C (2009) Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72:1181–1195. doi: 10.1111/j.1365-2958.2009.06717.x PubMedCentralPubMedGoogle Scholar
  2. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41PubMedGoogle Scholar
  3. Ammar EM, Wang Z, Yang S-T (2013) Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol 97:4677–4690PubMedGoogle Scholar
  4. Amyris (2012) Photo release -- Azul Brazilian airlines makes successful demonstration flight with amyris renewable jet fuel produced from sugarcane (NASDAQ:AMRS). Accessed 30 Sep 2013
  5. Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106:86–96. doi: 10.1002/bit.22668 PubMedGoogle Scholar
  6. Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808. doi: 10.1128/AEM.02046-08 PubMedCentralPubMedGoogle Scholar
  7. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311. doi: 10.1016/j.ymben.2007.08.003 PubMedGoogle Scholar
  8. Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. doi: 10.1038/nature06450 PubMedGoogle Scholar
  9. Atsumi S, Li Z, Liao JC (2009) Acetolactate Synthase from Bacillus subtilis serves as a 2-Ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75:6306–6311. doi: 10.1128/AEM.01160-09 PubMedCentralPubMedGoogle Scholar
  10. Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657PubMedCentralPubMedGoogle Scholar
  11. Beck JJ, Mahoney NE, Cook D, Gee WS (2012) Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. J Agric Food Chem 60:11869–11876. doi: 10.1021/jf304157q PubMedGoogle Scholar
  12. Beller HR, Goh E-B, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212–1223. doi: 10.1128/AEM.02312-09 PubMedCentralPubMedGoogle Scholar
  13. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954. doi: 10.1073/pnas.1106958108 PubMedCentralPubMedGoogle Scholar
  14. Booth JW, Phillips Jr CF (1998) Terpene dimer compositions and related methods of manufacture. Google PatentsGoogle Scholar
  15. Börjesson T, Stöllman U, Schnürer J (1990) Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl Environ Microbiol 56:3705–3710PubMedCentralPubMedGoogle Scholar
  16. Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5:65. doi: 10.1186/1754-6834-5-65 PubMedCentralPubMedGoogle Scholar
  17. Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522. doi: 10.1002/bit.24536 PubMedGoogle Scholar
  18. Brodhun F, Schneider S, Göbel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565. doi: 10.1042/BJ20091096 PubMedGoogle Scholar
  19. Buśko M, Kulik T, Ostrowska A, Góral T, Perkowski J (2014) Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol Lett 359:85–93. doi: 10.1111/1574-6968.12569 PubMedGoogle Scholar
  20. Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115. doi: 10.1016/j.femsle.2004.11.050 PubMedGoogle Scholar
  21. Chapaton TJ, Capehart TW, Linden JL (2004) Traction fluid with alkane bridged dimer. Google PatentsGoogle Scholar
  22. Cheesbrough TM, Kolattukudy PE (1988) Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem 263:2738–2743PubMedGoogle Scholar
  23. Chen CS, Forbus Jr TR (1990) Process for production of traction fluids from bicyclic and monocyclic terpenes with zeolite catalyst. Google PatentsGoogle Scholar
  24. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21. doi: 10.1186/1754-6834-4-21 PubMedCentralPubMedGoogle Scholar
  25. Chen S-K, Chin W-C, Tsuge K, Huang C-C, Li S-Y (2013) Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. Bioresour Technol 145:204–209PubMedGoogle Scholar
  26. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829. doi: 10.1128/AEM.70.5.2823-2829.2004 PubMedCentralPubMedGoogle Scholar
  27. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. doi: 10.1038/nature11475 PubMedGoogle Scholar
  28. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164. doi: 10.1007/s00253-009-2401-1 PubMedCentralPubMedGoogle Scholar
  29. Cuomo CA, Güldener U, Xu J-R, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma L-J, Baker SE, Rep M et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402PubMedGoogle Scholar
  30. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol. doi: 10.3389/fbioe.2014.00021 PubMedCentralPubMedGoogle Scholar
  31. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637. doi: 10.1016/j.phytochem.2009.07.030 PubMedGoogle Scholar
  32. Dennis M (1992) A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci 89:5306–5310PubMedCentralPubMedGoogle Scholar
  33. Díaz P, Señoráns FJ, Reglero G, Ibañez E (2002) Truffle aroma analysis by headspace solid phase microextraction. J Agric Food Chem 50:6468–6472PubMedGoogle Scholar
  34. Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368. doi: 10.3390/md8082340 PubMedCentralPubMedGoogle Scholar
  35. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8. doi: 10.1007/s00253-002-0992-x PubMedGoogle Scholar
  36. Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13:474–481PubMedGoogle Scholar
  37. Felicetti B, Cane DE (2004) Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J Am Chem Soc 126:7212–7221. doi: 10.1021/ja0499593 PubMedGoogle Scholar
  38. Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121. doi: 10.1078/1438-4639-00094 PubMedGoogle Scholar
  39. Freeman, G. G. M, R. I. (1949) The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum LinkGoogle Scholar
  40. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. doi: 10.1038/nchembio.2007.5 PubMedGoogle Scholar
  41. Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8, e1002558. doi: 10.1371/journal.pgen.1002558 PubMedCentralPubMedGoogle Scholar
  42. Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, Barbieri E, Giomaro G, Stocchi V (2008) Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun Mass Spectrom RCM 22:3147–3153. doi: 10.1002/rcm.3714 Google Scholar
  43. Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829PubMedGoogle Scholar
  44. Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG (2012) Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett 34:463–469PubMedGoogle Scholar
  45. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273. doi: 10.1021/ef900799c Google Scholar
  46. Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. doi: 10.1128/AEM.02625-07 PubMedCentralPubMedGoogle Scholar
  47. Heddergott C, Calvo AM, Latge JP (2014) The Volatome of Aspergillus fumigatus. Eukaryot Cell 13:1014–1025. doi: 10.1128/EC.00074-14 PubMedCentralPubMedGoogle Scholar
  48. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733. doi: 10.1128/AEM.02454-10 PubMedCentralPubMedGoogle Scholar
  49. Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26. doi: 10.1016/j.funeco.2012.09.005 Google Scholar
  50. International Energy Agency (2011) Technology roadmap: biofuels for transportGoogle Scholar
  51. Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM et al (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell Online 19:1994–2005Google Scholar
  52. Kim B, Cho B-R, Hahn J-S (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124PubMedGoogle Scholar
  53. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355. doi: 10.1146/annurev.arplant.043008.091955 PubMedGoogle Scholar
  54. Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469:116–120. doi: 10.1038/nature09628 PubMedCentralPubMedGoogle Scholar
  55. Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193. doi: 10.1080/10408440802291497 PubMedGoogle Scholar
  56. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80PubMedGoogle Scholar
  57. Lambert RJ, Skandamis PN, Coote PJ, Nychas G-J (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x PubMedGoogle Scholar
  58. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363PubMedGoogle Scholar
  59. Lancker FV, Adams A, Delmulle B, Saeger SD, Moretti A, Peteghem CV, Kimpe ND (2008) Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10:1127–1133. doi: 10.1039/B808608G PubMedGoogle Scholar
  60. Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99:1153–1166. doi: 10.1016/S0953-7562(09)80271-2 Google Scholar
  61. Lee W-H, Seo S-O, Bae Y-H, Nan H, Jin Y-S, Seo J-H (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475. doi: 10.1007/s00449-012-0736-y PubMedGoogle Scholar
  62. Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824PubMedGoogle Scholar
  63. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. doi: 10.1126/science.1168243 PubMedGoogle Scholar
  64. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596. doi: 10.1126/science.1217643 PubMedGoogle Scholar
  65. Liu W, Feng X, Zheng Y, Huang C-H, Nakano C, Hoshino T, Bogue S, Ko T-P, Chen C-C, Cui Y, Li J, Wang I, Hsu S-TD, Oldfield E, Guo R-T (2014) Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Sci Rep. doi: 10.1038/srep06214 Google Scholar
  66. Lu J, Brigham CJ, Gai CS, Sinskey AJ (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96:283–297. doi: 10.1007/s00253-012-4320-9 PubMedGoogle Scholar
  67. Ma SM, Li JW-H, Choi JW, Zhou H, Lee KKM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y (2009) Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326:589–592. doi: 10.1126/science.1175602 PubMedCentralPubMedGoogle Scholar
  68. Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC (2012) A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem Biol 7:689–697. doi: 10.1021/cb200313e PubMedCentralPubMedGoogle Scholar
  69. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802. doi: 10.1038/nbt833 PubMedGoogle Scholar
  70. Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305PubMedGoogle Scholar
  71. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176. doi: 10.1038/nbt1128 PubMedGoogle Scholar
  72. Meruva NK, Penn JM, Farthing DE (2004) Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry. J Ind Microbiol Biotechnol 31:482–488. doi: 10.1007/s10295-004-0175-0 PubMedGoogle Scholar
  73. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiol Read Engl 156:270–277. doi: 10.1099/mic.0.032540-0 Google Scholar
  74. Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol FGB 54:25–33. doi: 10.1016/j.fgb.2013.02.005 Google Scholar
  75. Murahashi S (1938) Uber die riechstoffe des matsutake (Armillaria matsutake Ito et Imai Agaricaceae). Sci Pap Inst Phys Chem Res Tokyo 34:155–172Google Scholar
  76. Nakano C, Kim H-K, Ohnishi Y (2011) Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes the direct conversion of geranyl diphosphate. ChemBioChem 12:1988–1991. doi: 10.1002/cbic.201100330 PubMedGoogle Scholar
  77. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latge J-P, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream M-A, Reichard U, Renauld H, Robson GD, de Cordoba SR, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana CRV, Weidman J, White O, Woodward J, Yu J-H, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi: 10.1038/nature04332 PubMedGoogle Scholar
  78. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845. doi: 10.1007/s00253-008-1807-5 PubMedGoogle Scholar
  79. Or J, Laseter JL, Weber D (1966) Alkanes in fungal spores. Science 154:399–400PubMedGoogle Scholar
  80. Park S-H, Kim S, Hahn J-S (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147PubMedGoogle Scholar
  81. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483. doi: 10.1038/ncomms1494 PubMedCentralPubMedGoogle Scholar
  82. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328. doi: 10.1038/nature11478 PubMedGoogle Scholar
  83. Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev MMBR 65:106–118. doi: 10.1128/MMBR.65.1.106-118.2001 Google Scholar
  84. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2014) Engineering terpene biosynthesis in streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol. doi: 10.1021/sb5002517 PubMedGoogle Scholar
  85. Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, Picco AM, De Kimpe N (2012) Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol 116:941–953. doi: 10.1016/j.funbio.2012.06.001 PubMedGoogle Scholar
  86. Renninger NS, Newman J, Reiling KK, Regentin R, Paddon CJ (2010) Production of isoprenoids. Patent Number US7659097 B2Google Scholar
  87. Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35PubMedGoogle Scholar
  88. Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277:43948–43960. doi: 10.1074/jbc.M206366200 PubMedGoogle Scholar
  89. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-Alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Env Microbiol 77:1718–1727. doi: 10.1128/AEM.02580-10 Google Scholar
  90. Samson RA (1985) Occurrence of moulds in modern living and working environments. Eur J Epidemiol 1:54–61PubMedGoogle Scholar
  91. Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol 3:466–475. doi: 10.1021/sb4001382 PubMedGoogle Scholar
  92. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562. doi: 10.1126/science.1187936 PubMedGoogle Scholar
  93. Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70:237–246. doi: 10.1007/s00253-005-0070-2 PubMedGoogle Scholar
  94. Schuchardt S, Kruse H (2009) Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis. J Basic Microbiol 49:350–362. doi: 10.1002/jobm.200800152 PubMedGoogle Scholar
  95. Scullin C, Stavila V, Skarstad A, Keasling JD, Simmons BA, Singh S (2015) Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima. Bioresour Technol. doi: 10.1016/j.biortech.2014.09.105 PubMedGoogle Scholar
  96. Searchinger T, Heimlich R (2015) Avoiding bioenergy competition for food crops and land. Install. 9 Creat Sustain Food Future World Resour InstGoogle Scholar
  97. Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, Portero CE, Narvaez-Trujillo A, Strobel SA (2015a) Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with common specificity determinants to the plant synthases. J Biol Chem. doi: 10.1074/jbc.M114.636159 Google Scholar
  98. Shaw JJ, Spakowicz DJ, Dalal RS, Davis JH, Lehr NA, Dunican BF, Orellana EA, Narváez-Trujillo A, Strobel SA (2015b) Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-6206-5 PubMedGoogle Scholar
  99. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320. doi: 10.1016/j.ymben.2008.08.001 PubMedGoogle Scholar
  100. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915. doi: 10.1128/AEM.03034-10 PubMedCentralPubMedGoogle Scholar
  101. Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168. doi: 10.1016/j.ymben.2006.10.005 PubMedGoogle Scholar
  102. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055. doi: 10.1007/s00253-010-2522-6
  103. Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598. doi: 10.1016/j.phytochem.2007.03.030 PubMedGoogle Scholar
  104. Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820PubMedGoogle Scholar
  105. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804. doi: 10.1126/science.1139612 PubMedGoogle Scholar
  106. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382PubMedGoogle Scholar
  107. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950PubMedGoogle Scholar
  108. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328. doi: 10.1099/mic.0.2008/022186-0 PubMedGoogle Scholar
  109. Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi: 10.1111/j.1574-6968.2011.02297.x PubMedGoogle Scholar
  110. Sukovich DJ, Seffernick JL, Richman JE, Hunt KA, Gralnick JA, Wackett LP (2010) Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76:3842–3849. doi: 10.1128/AEM.00433-10 PubMedCentralPubMedGoogle Scholar
  111. Tess Mends M, Yu E (2012) An Endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Pet Environ Biotechnol. doi: 10.4172/2157-7463.1000117 Google Scholar
  112. Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240. doi: 10.1016/j.fuel.2009.02.002 Google Scholar
  113. Tressl R, Bahri D, Engel KH (1982) Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 30:89–93Google Scholar
  114. Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K (2013) Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Nat Prod Rep 30:1139–1149. doi: 10.1039/c3np70037b PubMedGoogle Scholar
  115. Urano N, Fujii M, Kaino H, Matsubara M, Kataoka M (2014) Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae. Appl Microbiol Biotechnol 1–8Google Scholar
  116. van der Werf MJ, de Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. In: Berger RG, Babel PDW, Blanch PDHW, Cooney PDCL, Enfors PDS-O, Eriksson PDK-EL, Fiechter PDA, Klibanov PDAM, Mattiasson PDB, Primrose PDSB, Rehm PDHJ, Rogers PDPL, Sahm PDH, Schügerl PDK, Tsao PDGT, Venkat DK, Villadsen PDJ, von Stockar PDU, Wandrey PDC (eds) Biotechnology of aroma compounds. Springer, Berlin, pp 147–177Google Scholar
  117. Walker JD, Cooney JJ (1973) Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl Microbiol 26:705–708PubMedCentralPubMedGoogle Scholar
  118. Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655. doi: 10.1016/j.ymben.2011.08.001 PubMedGoogle Scholar
  119. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69. doi: 10.1186/1754-6834-6-69 PubMedCentralPubMedGoogle Scholar
  120. Wihlborg R (2008) Headspace soprtive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods 75:244–250PubMedGoogle Scholar
  121. Winters K, Parker PL, Baalen CV (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468. doi: 10.1126/science.163.3866.467 PubMedGoogle Scholar
  122. Wurzenberger M, Grosch W (1984a) Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (Psalliota bispora). Biochim Biophys Acta BBA-Lipids Lipid Metab 795:163–165. doi: 10.1016/0005-2760(84)90117-6 Google Scholar
  123. Wurzenberger M, Grosch W (1984b) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta BBA-Lipids Lipid Metab 794:25–30Google Scholar
  124. Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M et al (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6:60PubMedCentralPubMedGoogle Scholar
  125. Yuzawa S, Kim W, Katz L, Keasling JD (2012) Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli. Curr Opin Biotechnol 23:727–735. doi: 10.1016/j.copbio.2011.12.029 PubMedGoogle Scholar
  126. Zhang F, Yang X, Ran W, Shen Q (2014) Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiol Lett 359:116–123. doi: 10.1111/1574-6968.12582 PubMedGoogle Scholar
  127. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405. doi: 10.1002/bit.25198 PubMedGoogle Scholar
  128. Zou J-J, Chang N, Zhang X, Wang L (2012) Isomerization and dimerization of pinene using Al-incorporated MCM-41 mesoporous materials. ChemCatChem 4:1289–1297Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations