Skip to main content

Biomarkers for infection: enzymes, microbes, and metabolites

Abstract

Wound infection is a severe complication causing delayed healing and risks for patients. Conventional methods of diagnosis for infection involve error-prone clinical description of the wound and time-consuming microbiological tests. More reliable alternatives are still rare, except for invasive and unaffordable gold standard methods. This review discusses the diversity of new approaches for wound infection determination. There has been progress in the detection methods of microorganisms, including the assessment of the diversity of the bacterial community present in a wound, as well as in the elaboration of specific markers. Another interesting strategy involves the quantification of enzyme activities in the wound fluid secreted by the immune system as response to infection. Color-changing substrates for these enzymes consequently have been shown to allow detection of an infection in wounds in a fast and easy way. Promising results were also delivered in measuring pH changes or detecting enhanced amounts of volatile molecules in case of infection. A simple and effective infection detection tool is not yet on the market, but innovative ideas pave the way for the investigation of fast and easy point-of-care devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abbott RE, Corral CJ, MacIvor DM, Lin X, Ley TJ, Mustoe TA (1998) Augmented inflammatory responses and altered wound healing in cathepsin G-deficient mice. Arch Surg 133:1002–1006. doi:10.1001/archsurg.133.9.1002

    CAS  PubMed  Google Scholar 

  • Agrawal S, Prajapati R (2012) Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Nanotechnol 4:1528–1536

    Google Scholar 

  • Ågren MS, Mirastschijski U, Karlsmark TS-KU (2001) Topical synthetic inhibitor of matrix metalloproteinases delays epidermal regeneration of human wounds. Exp Dermatol 10:337–348

    PubMed  Google Scholar 

  • Bailey A, Pisanelli AM, Persaud KC (2008) Development of conducting polymer sensor arrays for wound monitoring. Sensors Actuators B Chem 131:5–9. doi:10.1016/j.snb.2007.12.035

    CAS  Google Scholar 

  • Be N, Allen JE, Brown TS, Gardner SN, McLoughlin KS, Forsberg JA, Kirkup BC, Chromy B, Luciw P, Elster E, Jaing CJ (2014) Microbial profiling of combat wound infection through detection microarray and next-generation sequencing. J Clin Microbiol 52:2583–2594. doi:10.1128/JCM.00556-14

    PubMed Central  PubMed  Google Scholar 

  • Biswas S, Rolain JM (2013) Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 92:14–24. doi:10.1016/j.mimet.2012.10.014

    CAS  PubMed  Google Scholar 

  • Bopp AF, Goynes W (2005) Detection of human neutrophil elastase with ethoxylate acrylate resin analogs. J Pept Res 66:160–168

    PubMed  Google Scholar 

  • Brocklesby KL, Johns SC, Jones AE, Sharp D, Smith RB (2013) Smart bandages–a colourful approach to early stage infection detection and control in wound care. Med Hypotheses 80:237–240. doi:10.1016/j.mehy.2012.11.037

    PubMed  Google Scholar 

  • Broszczak D, Stupar D, All C, Mvs S, Tj P, Gk S, Upton Z (2012) Biochemical profiling of proteins and metabolites in wound exudate from chronic wound environments. Wound Pract Res 20:62–72

    Google Scholar 

  • Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, Tenover FC, Alland D, Blaschke AJ, Bonomo RA, Carroll KC, Ferraro MJ, Hirschhorn LR, Joseph WP, Karchmer T, MacIntyre AT, Reller LB, Jackson AF (2013) Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57(Suppl 3):S139–S170. doi:10.1093/cid/cit578

    PubMed Central  PubMed  Google Scholar 

  • Carlsson J (1973) Simplified gas chromatographic procedure for identification of bacterial metabolic products. Appl Microbiol 25:287–289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Zhao J, Jiang J, Yu R (2012) A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 101:357–361. doi:10.1016/j.talanta.2012.09.041

    CAS  PubMed  Google Scholar 

  • Chowdhury F, Chowdhury A (2009) Pyrosequencing-an alternative to traditional Sanger sequencing. Am J Biochem Biotechnol 8:14–20

    Google Scholar 

  • Ciani I, Schulze H, Corrigan DK, Henihan G, Giraud G, Terry JG, Walton AJ, Pethig R, Ghazal P, Crain J, Campbell CJ, Bachmann TT, Mount AR (2012) Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens Bioelectron 31:413–418. doi:10.1016/j.bios.2011.11.004

    CAS  PubMed  Google Scholar 

  • Cutting KF, White RJ (2005) Criteria for identifying wound infection–revisited. Ostomy Wound Manag 51:28–34

    Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945. doi:10.1182/blood-2007-12-077917

    CAS  PubMed  Google Scholar 

  • Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41:30–42. doi:10.1016/j.bios.2012.09.029

    CAS  PubMed  Google Scholar 

  • Davies CE, Hill KE, Wilson MJ, Stephens P, Hill CM, Harding KG, Thomas DW (2004) Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42:3549–3557. doi:10.1128/JCM.42.8.3549-3557.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies CE, Hill KE, Newcombe RG, Stephens P, Wilson MJ, Harding KG, Thomas DW (2006) A prospective study of the microbiology of chronic venous leg ulcers to reevaluate the clinical predictive value of tissue biopsies and swabs. Wound Repair Regen 15:17–22. doi:10.1111/j.1524-475X.2006.00180.x

    Google Scholar 

  • De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P (2011) Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 34:20–29. doi:10.1016/j.syapm.2010.11.003

    PubMed  Google Scholar 

  • Drinkwater SL, Smith A, Burnand KG (2002) What can wound fluids tell us about the venous ulcer microenvironment? Int J Low Extrem Wounds 1:184–190. doi:10.1177/153473460200100307

    CAS  PubMed  Google Scholar 

  • Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278

    PubMed  Google Scholar 

  • Erdem A, Eksin E, Muti M (2014) Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surf B: Biointerfaces 115:205–211. doi:10.1016/j.colsurfb.2013.11.037

    CAS  PubMed  Google Scholar 

  • Feng J, Tian F, Yan J, He Q, Shen Y, Pan L (2011) A background elimination method based on wavelet transform in wound infection detection by electronic nose. Sensors Actuators B Chem 157:395–400. doi:10.1016/j.snb.2011.04.069

    CAS  Google Scholar 

  • Feng J, Tian F, Jia P, He Q, Shen Y, Liu T (2013) Feature selection using support vector machines and independent component analysis for wound infection detection by electronic nose. Sensors Mater 25:527–538

    Google Scholar 

  • Fernandez ML, Upton Z, Edwards H, Finlayson K, Shooter GK (2012) Elevated uric acid correlates with wound severity. Int Wound J 9:139–149. doi:10.1111/j.1742-481X.2011.00870.x

    PubMed  Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc B 93:306–317

    CAS  Google Scholar 

  • Franck T, Kohnen S, Boudjeltia KZ, Van Antwerpen P, Bosseloir A, Niesten A, Gach O, Nys M, Deby-Dupont G, Serteyn D (2009) A new easy method for specific measurement of active myeloperoxidase in human biological fluids and tissue extracts. Talanta 80:723–729. doi:10.1016/j.talanta.2009.07.052

    CAS  PubMed  Google Scholar 

  • Gao L, Mbonu N, Cao L, Gao D (2008) Label-free colorimetric detection of gelatinases on nanoporous silicon photonic films. Anal Chem 80:1468–1473. doi:10.1021/ac701870y

    CAS  PubMed  Google Scholar 

  • Gardner SE, Frantz RA, Doebbeling BN (2001) The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen 9:178–186

    CAS  PubMed  Google Scholar 

  • Gardner SE, Frantz RA, Saltzman CL, Hillis SL, Park H, Scherubel M (2006) Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair Regen 14:548–557. doi:10.1111/j.1743-6109.2006.00162.x

    PubMed  Google Scholar 

  • Gardner SE, Hillis Stephen L, Frantz R (2010) Clinical signs of infection in diabetic foot ulcers with high microbial load. Biol Res Nurs 11:119–128. doi:10.1177/1099800408326169.Clinical

    Google Scholar 

  • Gethin G (2012) Understanding the inflammatory process in wound healing. Br J Community Nurs Suppl:S17–8, S20–S22.

  • Gharizadeh B, Käller M, Nyrén P, Andersson A, Uhlén M, Lundeberg J, Ahmadian A (2003) Viral and microbial genotyping by a combination of multiplex competitive hybridization and specific extension followed by hybridization to generic tag arrays. Nucleic Acids Res 31, e146. doi:10.1093/nar/gng147

    PubMed Central  PubMed  Google Scholar 

  • Gorodkiewicz E, Sieńczyk M, Regulska E, Grzywa R, Pietrusewicz E, Lesner A, Lukaszewski Z (2012) Surface plasmon resonance imaging biosensor for cathepsin G based on a potent inhibitor: development and applications. Anal Biochem 423:218–223. doi:10.1016/j.ab.2012.01.033

    CAS  PubMed  Google Scholar 

  • Grabbe Stephan DJSLKA (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420

    PubMed  Google Scholar 

  • Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated myeloperoxidase activity in white matter in multiple sclerosis. Neurosci Lett 444:195–198. doi:10.1016/j.neulet.2008.08.035

    CAS  PubMed  Google Scholar 

  • Grzywa R, Gorodkiewicz E, Burchacka E, Lesner A, Laudański P, Lukaszewski Z, Sieńczyk M (2014) Determination of cathepsin G in endometrial tissue using a surface plasmon resonance imaging biosensor with tailored phosphonic inhibitor. Eur J Obstet Gynecol Reprod Biol 182C:38–42. doi:10.1016/j.ejogrb.2014.08.029

    Google Scholar 

  • Hajnsek M, Schiffer D, Harrich D, Koller D, Verient V, Palen JVD, Heinzle A, Binder B, Sigl E, Sinner F, Guebitz GM (2015) An electrochemical sensor for fast detection of wound infection based on myeloperoxidase activity. Sensors Actuators B Chem 209:265–274. doi:10.1016/j.snb.2014.11.125

    CAS  Google Scholar 

  • Hamid M (2009) Potential applications of peroxidases. Food Chem 115:1177–1186. doi:10.1016/j.foodchem.2009.02.035

    CAS  Google Scholar 

  • Hansson M, Olsson I, Nauseef WM (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 445:214–224. doi:10.1016/j.abb.2005.08.009

    CAS  PubMed  Google Scholar 

  • Haqqani AS, Sandhu JK, Birnboim HC (1999) A myeloperoxidase-specific assay based upon bromide-dependent chemiluminescence of luminol. Anal Biochem 273:126–132. doi:10.1006/abio.1999.4206

    CAS  PubMed  Google Scholar 

  • Hardt M, Guo Y, Henderson G, Laine RA (2003) Zymogram with Remazol brilliant blue-labeled Micrococcus lysodeikticus cells for the detection of lysozymes: example of a new lysozyme activity in Formosan termite defense secretions. Anal Biochem 312:73–76. doi:10.1016/S0003-2697(02)00443-8

    CAS  PubMed  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    CAS  PubMed  Google Scholar 

  • Hasmann A, Gewessler U, Hulla E, Schneider KP, Binder B, Francesko A, Tzanov T, Schintler M, Van der Palen J, Guebitz GM, Wehrschuetz-Sigl E (2011a) Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. Exp Dermatol 20:508–513. doi:10.1111/j.1600-0625.2011.01256.x

    CAS  PubMed  Google Scholar 

  • Hasmann A, Wehrschuetz-Sigl E, Kanzler G, Gewessler U, Hulla E, Schneider KP, Binder B, Schintler M, Guebitz GM (2011b) Novel peptidoglycan-based diagnostic devices for detection of wound infection. Diagn Microbiol Infect Dis 71:12–23. doi:10.1016/j.diagmicrobio.2010.09.009

    CAS  PubMed  Google Scholar 

  • Hasmann A, Wehrschuetz-Sigl E, Marold A, Wiesbauer H, Schoeftner R, Gewessler U, Kandelbauer A, Schiffer D, Schneider KP, Binder B, Schintler M, Guebitz GM (2013) Analysis of myeloperoxidase activity in wound fluids as a marker of infection. Ann Clin Biochem 50:245–254

    CAS  PubMed  Google Scholar 

  • He J-L, Wu Z-S, Zhang S-B, Shen G-L, Yu R-Q (2010) Fluorescence aptasensor based on competitive-binding for human neutrophil elastase detection. Talanta 80:1264–1268. doi:10.1016/j.talanta.2009.09.019

    CAS  PubMed  Google Scholar 

  • He Q, Yan J, Shen Y, Bi Y, Ye G, Tian F, Wang Z (2012) Classification of electronic nose data in wound infection detection based on PSO-SVM combined with wavelet transform. Intell Autom Soft Comput 18:967–979. doi:10.1080/10798587.2012.10643302

    Google Scholar 

  • Heinzle A, Papen-Botterhuis NE, Schiffer D, Schneider KP, Binder B, Schintler M, Haaksman IK, Lenting HB, Gübitz GM, Sigl E (2013) Novel protease-based diagnostic devices for detection of wound infection. Wound Repair Regen 21:482–489. doi:10.1111/wrr.12040

    PubMed  Google Scholar 

  • Herrasti Z, Martínez F, Baldrich E (2014) Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: application to myeloperoxidase detection. Anal Bioanal Chem 406:5487–5493. doi:10.1007/s00216-014-7954-x

    CAS  PubMed  Google Scholar 

  • Holland LA, Chetwyn NP, Perkins MD, Lunte SM (1997) Capillary electrophoresis in pharmaceutical analysis. Pharm Res 14:372–387

    CAS  PubMed  Google Scholar 

  • Howell-Jones RS, Wilson MJ, Hill KE, Howard AJ, Price PE, Thomas DW (2005) A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149. doi:10.1093/jac/dkh513

    CAS  PubMed  Google Scholar 

  • Jia P, Tian F, He Q, Fan S, Liu J, Yang SX (2014) Feature extraction of wound infection data for electronic nose based on a novel weighted KPCA. Sensors Actuators B Chem 201:555–566. doi:10.1016/j.snb.2014.05.025

    CAS  Google Scholar 

  • Jiang Z-L, Huang G-X (2007) Resonance scattering spectra of Micrococcus lysodeikticus and its application to assay of lysozyme activity. Clin Chim Acta 376:136–141. doi:10.1016/j.cca.2006.08.005

    CAS  PubMed  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625. doi:10.1189/jlb.1204697.1

    CAS  PubMed  Google Scholar 

  • Laschtschenko P (1909) Uber die keimtötende und entwicklungshemmende Wirkung von Hühnereiweiß. Zeitschrift für Hyg und Infekt 64:419–427

    Google Scholar 

  • Lau D, Baldus S (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 111:16–26. doi:10.1016/j.pharmthera.2005.06.023

    CAS  PubMed  Google Scholar 

  • Li L-D, Chen Z-B, Zhao H-T, Guo L, Mu X (2010) An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification. Sensors Actuators B Chem 149:110–115. doi:10.1016/j.snb.2010.06.015

    CAS  Google Scholar 

  • Lian Y, He F, Mi X, Tong F, Shi X (2014) Lysozyme aptamer biosensor based on electron transfer from SWCNTs to SPQC-IDE. Sensors Actuators B Chem 199:377–383. doi:10.1016/j.snb.2014.04.001

    CAS  Google Scholar 

  • Lipsky BA (2012) Expert opinion on the management of infections in the diabetic foot. Diabetes Metab Res Rev 28:163–178. doi:10.1002/dmrr

    PubMed  Google Scholar 

  • Lipsky BA, Berendt AR, Deery HG, Embil JM, Joseph WS, Karchmer AW, LeFrock JL, Lew DP, Mader JT, Norden C, Tan JS (2004) Diagnosis and treatment of diabetic foot infections. Clin Infect Dis 39:885–910. doi:10.1086/424846

    PubMed  Google Scholar 

  • Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG, Armstrong DG, Deery HG, Embil JM, Joseph WS, Karchmer AW, Pinzur MS, Senneville E, Infectious Diseases Society of America (2012) 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:e132–e173. doi:10.1093/cid/cis346

    PubMed  Google Scholar 

  • Liu B, Lu L, Li Q, Xie G (2011) Disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film containing gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes. Microchim Acta 173:513–520. doi:10.1007/s00604-011-0575-6

    CAS  Google Scholar 

  • Lu L, Liu B, Liu C, Xie G (2010) Amperometric immunosensor for myeloperoxidase in human serum based on a multi-wall carbon nanotubes-ionic liquid-cerium dioxide film-modified electrode. Bull Korean Chem Soc 31:3259–3264. doi:10.5012/bkcs.2010.31.11.3259

    CAS  Google Scholar 

  • Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155:2603–2611. doi:10.1099/mic.0.028712-0

    CAS  PubMed  Google Scholar 

  • Mark E, Rupp, Paul D, Fey (2003) Extended spectrum β-Lactamase (ESBL)-producing Enterobacteriaceae consideration for diagnosis, prevention and drug treatment. Drugs 63:353–365

    Google Scholar 

  • Martin M, Taleb Bendiab C, Massif L, Palestino G, Agarwal V, Cuisinier F, Gergely C (2011) Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies. Phys Status Solidi 8:1888–1892. doi:10.1002/pssc.201000155

    CAS  Google Scholar 

  • Mazumdar RM, Chowdhury A, Hossain N, Mahajan S, Islam S (2013) Pyrosequencing-a next generation sequencing technology. World Appl Sci J 24(24):1558–1571. doi:10.5829/idosi.wasj.2013.24.12.2972

    Google Scholar 

  • McDonnell B, Hearty S, Finlay WJJ, O’Kennedy R (2011) A high-affinity recombinant antibody permits rapid and sensitive direct detection of myeloperoxidase. Anal Biochem 410:1–6. doi:10.1016/j.ab.2010.09.039

    CAS  PubMed  Google Scholar 

  • Melendez JH, Frankel YM, An AT, Williams L, Price LB, Wang N-Y, Lazarus GS, Zenilman JM (2010) Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds. Clin Microbiol Infect 16:1762–1769. doi:10.1111/j.1469-0691.2010.03158.x

    CAS  PubMed  Google Scholar 

  • Moore WGI, Bodden MK, Windsor LJ, Decarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    PubMed  Google Scholar 

  • Neumaier M, Scherer M (2008) C-reactive protein levels for early detection of postoperative infection after fracture surgery in 787 patients. Acta Orthop 79:428–432. doi:10.1080/17453670710015355

    PubMed  Google Scholar 

  • Persaud KC (2005) Medical applications of odor-sensing devices. Int J Low Extrem Wounds 4:50–56. doi:10.1177/1534734605275139

    PubMed  Google Scholar 

  • Phair J, Newton L, McCormac C, Cardosi MF, Leslie R, Davis J (2011) A disposable sensor for point of care wound pH monitoring. Analyst 136:4692–4695. doi:10.1039/c1an15675f

    CAS  PubMed  Google Scholar 

  • Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM (2009) Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4, e6462. doi:10.1371/journal.pone.0006462

    PubMed Central  PubMed  Google Scholar 

  • Puchberger-Enengl D, Krutzler C, Vellekoop MJ, Gusshausstrasse E (2011) Organically modified silicate film pH sensor for continuous wound monitoring. Sensors, IEEE. 679–682

  • Pulli B, Ali M, Forghani R, Schob S, Hsieh KLC, Wojtkiewicz G, Linnoila JJ, Chen JW (2013) Measuring myeloperoxidase activity in biological samples. PLoS One 8, e67976. doi:10.1371/journal.pone.0067976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds WF, Rhees J, Maciejewski D, Paladino T, Sieburg H, Maki RA, Masliah E (1999) Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease. Exp Neurol 155:31–41. doi:10.1006/exnr.1998.6977

    CAS  PubMed  Google Scholar 

  • Richard J-L, Sotto A, Lavigne J-P (2011) New insights in diabetic foot infection. World J Diabetes 2:24–32. doi:10.4239/wjd.v2.i2.24

    PubMed Central  PubMed  Google Scholar 

  • Rodríguez MC, Rivas GA (2009) Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–216. doi:10.1016/j.talanta.2008.11.002

    PubMed  Google Scholar 

  • Rudolph V, Andrié RP, Rudolph TK, Friedrichs K, Klinke A, Hirsch-Hoffmann B, Schwoerer AP, Lau D, Fu X, Klingel K, Sydow K, Didié M, Seniuk A, von Leitner E-C, Szoecs K, Schrickel JW, Treede H, Wenzel U, Lewalter T, Nickenig G, Zimmermann W-H, Meinertz T, Böger RH, Reichenspurner H, Freeman BA, Eschenhagen T, Ehmke H, Hazen SL, Willems S, Baldus S (2010) Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med 16:470–474. doi:10.1038/nm.2124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salman M (2013) A novel multiplex PCR for detection of Pseudomonas aeruginosa: a major cause of wound infections. Pakistan J Med Sci 29:957–961. doi:10.12669/pjms.294.3652

    Google Scholar 

  • Schiffer D, Verient V, Luschnig D, Blokhuis-Arkes MHE, Palen JVD, Gamerith C, Burnet M, Sigl E, Heinzle A, Guebitz GM (2015) Lysozyme-responsive polymer systems for detection of infection. Eng Life Sci. doi:10.1002/elsc.201400145

    Google Scholar 

  • Schneider KP, Gewessler U, Flock T, Heinzle A, Schenk V, Kaufmann F, Sigl E, Guebitz GM (2012) Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase. N Biotechnol 29:502–509. doi:10.1016/j.nbt.2012.03.005

    CAS  PubMed  Google Scholar 

  • Schreml S, Meier R (2011) 2D luminescence imaging of pH in vivo. Proc Natl Acad Sci 108:2432–2437. doi:10.1073/pnas.1006945108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1006945108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreml S, Meier RJ, Wolfbeis OS, Landthaler M, Szeimies R (2010) 2D luminescence imaging of pH in vivo. PNAS. doi:10.1073/pnas.1006945108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1006945108

    Google Scholar 

  • Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771. doi:10.1111/j.1524-475X.2009.00543.x.Human

    PubMed Central  PubMed  Google Scholar 

  • Sener G, Ozgur E, Yılmaz E, Uzun L, Say R, Denizli A (2010) Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens Bioelectron 26:815–821. doi:10.1016/j.bios.2010.06.003

    CAS  PubMed  Google Scholar 

  • Šetkus A, Galdikas A-J, Kancleris Ž-A, Olekas A, Senulienė D, Strazdienė V, Rimdeika R, Bagdonas R (2006) Featuring of bacterial contamination of wounds by dynamic response of SnO2 gas sensor array. Sensors Actuators B Chem 115:412–420. doi:10.1016/j.snb.2005.10.003

    Google Scholar 

  • Sharp D (2013) Printed composite electrodes for in-situ wound pH monitoring. Biosens Bioelectron 50:399–405. doi:10.1016/j.bios.2013.06.042

    CAS  PubMed  Google Scholar 

  • Sharp D, Davis J (2008) Integrated urate sensors for detecting wound infection. Electrochem Commun 10:709–713. doi:10.1016/j.elecom.2008.02.025

    CAS  Google Scholar 

  • Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J (2010) Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 77:114–119. doi:10.1016/j.bioelechem.2009.07.008

    CAS  PubMed  Google Scholar 

  • Sibley CD, Peirano G, Church DL (2012) Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. Infect Genet Evol 12:505–521

    CAS  PubMed  Google Scholar 

  • Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28:519–526. doi:10.1016/j.clindermatol.2010.03.009

    PubMed  Google Scholar 

  • Snydman DR, Jacobus NV, McDermott LA, Supran S, Cuchural GJ, Finegold S, Harrell L, Hecht DW, Iannini P, Jenkins S, Pierson C, Rihs J, Gorbach SL (1999) Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother 43:2417–2422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y, Li Y, Liu Z, Liu L, Wang X, Su X, Ma Q (2014) A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on-off” nanosensor for lysozyme detection. Biosens Bioelectron 61:9–13. doi:10.1016/j.bios.2014.04.036

    CAS  PubMed  Google Scholar 

  • Stair JL, Watkinson M, Krause S (2009) Sensor materials for the detection of proteases. Biosens Bioelectron 24:2113–2118. doi:10.1016/j.bios.2008.11.002

    CAS  PubMed  Google Scholar 

  • Swirski FK, Wildgruber M, Ueno T, Figueiredo J-L, Panizzi P, Iwamoto Y, Zhang E, Stone JR, Rodriguez E, Chen JW, Pittet MJ, Weissleder R, Nahrendorf M (2010) Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. J Clin Invest 120:2627–2634. doi:10.1172/JCI42304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szeliga J, Ewa Kłodzińska MJ (2011) The clinical use of a fast screening test based on technology of capillary zone electrophoresis (CZE) for identification of Escherichia coli infection in biological material. Med Sci Monit 17:91–96

    Google Scholar 

  • Tong J, Liu C, Summanen P, Xu H, Finegold SM (2011) Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17:64–68. doi:10.1016/j.anaerobe.2011.03.004

    CAS  PubMed  Google Scholar 

  • Torsteinsdóttir I, Hâkansson L, Hällgren R, Gudbjörnsson B, Arvidson NG, Venge P (1999) Serum lysozyme: a potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology (Oxford) 38:1249–1254. doi:10.1093/rheumatology/38.12.1249

    Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560. doi:10.3201/eid0404.980405

    PubMed Central  PubMed  Google Scholar 

  • Williams DT, Hilton JR, Harding KG (2004) Diagnosing foot infection in diabetes. Clin Infect Dis 39:S83–S86. doi:10.1086/383267

    PubMed  Google Scholar 

  • Windmiller JR, Chinnapareddy S, Santhosh P, Halámek J, Chuang MC, Bocharova V, Tseng TF, Chou TY, Katz E, Wang J (2010) Strip-based amperometric detection of myeloperoxidase. Biosens Bioelectron 26:886–889. doi:10.1016/j.bios.2010.07.031

    CAS  PubMed  Google Scholar 

  • Wu YC, Kulbatski I, Medeiros PJ, Maeda A, Bu J, Xu L, Chen Y, DaCosta RS (2014) Autofluorescence imaging device for real-time detection and tracking of pathogenic bacteria in a mouse skin wound model: preclinical feasibility studies. J Biomed Opt 19:085002. doi:10.1117/1.JBO.19.8.085002

    PubMed  Google Scholar 

  • Yager DR, Kulina RA, Gilman LA (2007) Wound fluids: a window into the wound environment? Int J Low Extrem Wounds 6:262–272. doi:10.1177/1534734607307035

    PubMed  Google Scholar 

  • Yan J, Tian F, He Q, Shen Y (2012) Feature extraction from sensor data for detection of wound pathogen based on electronic nose. Sensors Mater 24:57–73

    Google Scholar 

  • Yoshida W, Abe K, Ikebukuro K (2014) Emerging techniques employed in aptamer-based diagnostic tests. Expert Rev Mol Diagn 14:143–151. doi:10.1586/14737159.2014.868307

    CAS  PubMed  Google Scholar 

  • Zhou J, Loftus AL, Mulley G, Jenkins ATA (2010) A thin film detection/response system for pathogenic bacteria. J Am Chem Soc 132:6566–6570. doi:10.1021/ja101554a

    CAS  PubMed  Google Scholar 

  • Zhou J, Tun TN, Hong S, Mercer-Chalmers JD, Laabei M, Young AER, Jenkins ATA (2011) Development of a prototype wound dressing technology which can detect and report colonization by pathogenic bacteria. Biosens Bioelectron 30:67–72. doi:10.1016/j.bios.2011.08.028

    PubMed  Google Scholar 

  • Zou F, Schmon M, Sienczyk M, Grzywa R, Palesch D, Boehm BO, Sun ZL, Watts C, Schirmbeck R, Burster T (2012) Application of a novel highly sensitive activity-based probe for detection of cathepsin G. Anal Biochem 421:667–672. doi:10.1016/j.ab.2011.11.016

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604278

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Schiffer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tegl, G., Schiffer, D., Sigl, E. et al. Biomarkers for infection: enzymes, microbes, and metabolites. Appl Microbiol Biotechnol 99, 4595–4614 (2015). https://doi.org/10.1007/s00253-015-6637-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6637-7

Keywords

  • Infection detection
  • Chronic wounds
  • Sensors
  • Diagnostic
  • Point of care