Skip to main content
Log in

Changes in intestinal bacterial communities are closely associated with shrimp disease severity

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Increasing evidence has revealed a close association between intestinal bacterial communities and human health. However, given that host phylogeny shapes the composition of intestinal microbiota, it is unclear whether changes in intestinal microbiota structure in relation to shrimp health status. In this study, we collected shrimp and seawater samples from ponds with healthy and diseased shrimps to understand variations in bacterial communities among habitats (water and intestine) and/or health status. The bacterial communities were clustered according to the original habitat and health status. Habitat and health status constrained 14.6 and 7.7 % of the variation in bacterial communities, respectively. Changes in shrimp intestinal bacterial communities occurred in parallel with changes in disease severity, reflecting the transition from a healthy to a diseased state. This pattern was further evidenced by 38 bacterial families that were significantly different in abundance between healthy and diseased shrimps; moderate changes were observed in shrimps with sub-optimal health. In addition, within a given bacterial family, the patterns of enrichment or decrease were consistent with the known functions of those bacteria. Furthermore, the identified 119 indicator taxa exhibited a discriminative pattern similar to the variation in the community as a whole. Overall, this study suggests that changes in intestinal bacterial communities are closely associated with the severity of shrimp disease and that indicator taxa can be used to evaluate shrimp health status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non‐parametric multivariate analysis of variance. Aust Ecol 26(1):32–46

    Google Scholar 

  • Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945

    Article  CAS  Google Scholar 

  • Balcázar JL, Blas ID, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3):173–186

    Article  PubMed  Google Scholar 

  • Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77(4):1309–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beardsley C, Moss S, Malfatti F, Azam F (2011) Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol Ecol 77(1):134–145

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Reinisch W (2013) Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases? Best Pract Res Clin Gastroenterol 27(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Schwab C, Milinovich G, Reichert J, Mahfoudh KB, Decker T, Engel M, Hai B, Hainzl E, Heider S (2012) Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J 6(11):2091–2106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derôme N (2013) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8(12):e84772

    Article  PubMed Central  PubMed  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaiyapechara S, Rungrassamee W, Suriyachay I, Kuncharin Y, Klanchui A, Karoonuthaisiri N, Jiravanichpaisal P (2012) Bacterial community associated with the intestinal tract of P. monodon in commercial farms. Microb Ecol 63(4):938–953

    Article  PubMed  Google Scholar 

  • Churchill GA (2004) Using ANOVA to analyze microarray data. Biotechniques 37:173–175

    CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non‐parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143

    Article  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Eaton AD, Franson MAH (2005) Standard methods for the examination of water & wastewate. American Public Health Association, Water Environment Federation

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAO (2010) The state of world fisheries and aquaculture. FAO Rome, Italy

  • Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Mic 48(2):149–158

    Article  CAS  Google Scholar 

  • Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2:194

    Article  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  • Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • Leser TD, Mølbak L (2009) Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 11(9):2194–2206

    Article  CAS  PubMed  Google Scholar 

  • Leung TL, Bates AE (2013) More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J Appl Ecol 50(1):215–222

    Article  Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S (2013) Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7(5):937–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87(1):53–63

    Article  PubMed  Google Scholar 

  • Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol-Gastr L 276(4):G941–G950

    CAS  Google Scholar 

  • Nerstedt A, Nilsson EC, Ohlson K, Håkansson J, Thomas Svensson L, Löwenadler B, Svensson UK, Mahlapuu M (2007) Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice. Brit J Nutr 97(06):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Pandit SN, Kolasa J, Cottenie K (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90(8):2253–2262

    Article  PubMed  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9(3):e91853

    Article  PubMed Central  PubMed  Google Scholar 

  • Schryver PD, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8(12):2360–2368

    Article  PubMed Central  PubMed  Google Scholar 

  • Snieszko S (1974) The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol 6(2):197–208

    Article  Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta‐analysis. Mol Ecol 21(13):3363–3378

    Article  PubMed  Google Scholar 

  • Sung H, Hsu S, Chen C, Ting Y, Chao W (2001) Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation. Aquaculture 192(2):101–110

  • Team RC (2005) R: A language and environment for statistical computing. R foundation for Statistical Computing

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

    Article  Google Scholar 

  • Tseng I, Chen JC (2004) The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol 17(4):325–333

    Article  CAS  PubMed  Google Scholar 

  • Vaseeharan B, Ramasamy P (2003) Abundance of potentially pathogenic microorganisms in (Penaeus monodon) larvae rearing systems in India. Microbiol Res 158(4):299–308

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong J, Ye X, Wang K, Chen H, Hu C, Zhu J, Zhang D (2014a) The biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea. Appl Environ Microbiol 80(6):1919–1925

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiong J, Zhu J, Wang K, Wang X, Ye X, Liu L, Zhao Q, Hou M, Qiuqian L, Zhang D (2014b) The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microb Ecol 67(2):256–264

    Article  PubMed  Google Scholar 

  • Xiong J, Zhu J, Zhang D (2014c) The application of bacterial indicator phylotypes to predict shrimp health status. Appl Microbiol Biotechnol 98:8291–8299

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J (2015) Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep 5:9316

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Wang X, Xiong J, Zhu J, Wang Y, Zhao Q, Chen H, Guo A, Wu J, Dai H (2014) Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol Indic 38:218–224

    Article  CAS  Google Scholar 

  • Zhou H, Li D, Tam N, Jiang H, Sheng H, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective highthroughput method foe seeessing microbial diversity. ISME J 5:741–749

  • Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, Qi X, Su H, Xie L (2012) A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS One 7(2):e29961

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (863 Program, 2012AA092000), the Natural Science Foundation of Ningbo City (2013A610169), the Natural Science Foundation (XYL14004), the Experimental Technology Research and Development Project (SYJS201405), and the KC Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Wang, K., Wu, J. et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol 99, 6911–6919 (2015). https://doi.org/10.1007/s00253-015-6632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6632-z

Keywords

Navigation