Skip to main content
Log in

Identification of mannitol as compatible solute in Gluconobacter oxydans

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gluconobacter oxydans is an industrially important bacterium owing to its regio- and enantio-selective incomplete oxidation of various sugars, alcohols, and polyols. The complete genome sequence is available, but it is still unknown how the organism adapts to highly osmotic sugar-rich environments. Therefore, the mechanisms of osmoprotection in G. oxydans were investigated. The accumulation and transport of solutes are hallmarks of osmoadaptation. To identify potential osmoprotectants, G. oxydans was grown on a yeast glucose medium in the presence of 100 mM potassium phosphate (pH 7.0) along with various concentrations of sucrose (0–600 mM final concentration), which was not metabolized. Intracellular metabolites were analyzed by HPLC and 13C NMR spectroscopy under stress conditions. Both of these analytical techniques highlighted the accumulation of mannitol as a potent osmoprotectant inside the stressed cells. This intracellular mannitol accumulation correlated with increased extracellular osmolarity of the medium. For further confirmation, the growth behavior of G. oxydans was analyzed in the presence of small amounts of mannitol (2.5–10 mM) and 300 mM sucrose. Growth under sucrose-induced osmotic stress conditions was almost identical to control growth when exogenous mannitol was added in low amounts. Thus, mannitol alleviates the osmotic stress of sucrose on cellular growth. Moreover, the positive effect of exogenous mannitol on the rate of glucose consumption and gluconate formation was also monitored. These results may be helpful to optimize the processes of industrial product formation in highly concentrated sugar solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi O, Toyama H, Matsushita K (1999) Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans. Biosci Biotechnol Biochem 63:402–407

    Article  CAS  Google Scholar 

  • Asai T (1971) The classification and biochemistry of acetic acid bacteria. In: Sakaguchi K, Vemuna T, Kinoshito S (eds) Biochemical and industrial aspects of fermentation. Kadansha Ltd., Tokyo, pp 201–232

    Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chalcoff VR, Aizeni MA, Galetto L (2006) Nectar concentration and composition of 26 species from the temperate forest of South America. Ann Bot 97:413–421

    Article  PubMed Central  PubMed  Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 267–278

    Google Scholar 

  • De Muynck C, Pereira CSS, Naessens M, Parmentier S, Soetaert W, Vandamme EJ (2007) The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Crit Rev Biotechnol 27:147–171

    Article  PubMed  Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mozhayskiy V, Quinones-Soto S, Park J, Tagkopoulos I (2013) Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643

    Article  PubMed Central  PubMed  Google Scholar 

  • Efiuvwevwere BJO, Gorris LGM, Smid EJ, Kets EPW (1999) Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl Microbiol Biotechnol 51:100–104

    Article  CAS  Google Scholar 

  • Empadinhas N, da Costa MS (2009) Diversity, distribution and biosynthesis of compatible solutes in prokaryotes. Contrib Sci 5:95–105

    Google Scholar 

  • Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes. Arch Microbiol 153:607–613

    Article  CAS  Google Scholar 

  • Groisillier A, Labourel A, Michel G, Tonon T (2014) The mannitol utilization system of the marine bacterium Zobellia galactanivorans. Appl Environ Microbiol. doi:10.1128/AEM.02808-14, Published online ahead of print on 29 December 2014

    PubMed  Google Scholar 

  • Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    CAS  PubMed  Google Scholar 

  • Hancock RD (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent patents on food. Nutr Agric 1:39–49

    CAS  Google Scholar 

  • Hanke T, Nöh K, Noack S, Polen T, Bringer S, Sahm H, Wiechert W, Bott M (2013) Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Appl Environ Microbiol 79:2336–2248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwamoto K, Shiraiwa Y (2005) Salt regulated mannitol metabolism in algae. Mar Biotechnol Mini Rev 7:407–415

    Article  CAS  Google Scholar 

  • Jennings DH (1984) Polyol metabolism in fungi. Adv Microb Physiol 25:149–193

    CAS  PubMed  Google Scholar 

  • Kets EPW, Galinski EA, De Witt M, De Bont JAM, Heipieper H (1996) Mannitol, a novel compatible solute in Pseudomonas putida S12. J Bacteriol 178:6665–6670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kets EPW (1997) Compatible solutes in lactic acid bacteria subjected to water stress. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands

  • Koch AL (1997) Microbial physiology and ecology of slow growth. Microbiol Mol Biol Rev 61:305–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY (1996) High cell density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  PubMed  Google Scholar 

  • Lewis IA, Schommer SC, Markley JL (2009) rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn Reson Chem 47:123–126

    Article  Google Scholar 

  • Loos H, Krämer RH, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luchterhand B, Fischöder T, Grimm AR, Wewetzer S, Wunderlich M, Schlepütz T, Büchs J (2015) Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers. J Ind Microbiol Biotechnol 42:585–600

    Article  CAS  PubMed  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12:87–132

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Schweiger P, Deppenmeier U (2013) Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Appl Microbiol Biotechnol 97:3457–3466

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz ME, Bleckwedel J, Raya RR, Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726

    Article  CAS  PubMed  Google Scholar 

  • Prescott FJ, Shaw JK, Bilello P, Cragwall GO (1953) Gluconic acid and its derivatives. Ind Eng Chem 45:338–342

    Article  CAS  Google Scholar 

  • Pronk JT, Levering PR, Olijve W, Van Dijken JP (1989) Role of NADP dependent and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enzym Microb Technol 11:160–164

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Rabenhorst J, Gatfield I, Hilmer JM (2001) Natural, aliphatic and thiocar-boxylic acids obtainable by fermentation and a microorganism therefore. Patent EP1078990

  • Rauch B, Pahlke J, Schweiger P, Deppenmeier U (2010) Characterization of enzymes involved in glucose and gluconate utilization in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88:711–718

    Article  CAS  PubMed  Google Scholar 

  • Richhardt J, Bringer S, Bott M (2012) Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 78:6975–6986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer WD (1991) High cell density cultivation of E. coli at controlled specific growth rate. J Biotechnol 20:17–28

    Article  CAS  PubMed  Google Scholar 

  • Romantsov T, Stalker L, Culham DE, Wood JM (2008) Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J Biol Chem 283:12314–12323

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891

    Article  CAS  PubMed  Google Scholar 

  • Sand M, Mingote AI, Santos H, Müller V, Averhoff B (2013) Mannitol, a compatible solute synthesized by Acinetobacter baylyi in a two-step mechanism including a salt-induced and salt-dependent mannitol-1-phosphate dehydrogenase. Environ Microbiol 15:2187–2197

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DT (1964) Metal-gluconate complexes. Chem Rev 64:633–643

    Article  CAS  Google Scholar 

  • Schedel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis. In: Kelly DR (ed) Biotechnology, vol 8b. Wiley-VCH, Weinheim, pp 295–308

    Google Scholar 

  • Sévin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–272

    Article  PubMed  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density: a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  PubMed  Google Scholar 

  • Sievers M, Swings J (2005) Family II Acetobacteriaceae. In: Garrity G, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2c. Springer, New York, pp 41–95

    Google Scholar 

  • Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M (2013) Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 6:180–193

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiegmann K, Hensler M, Wöhlbrand L, Ulbrich M, Schomburg D, Rabus R (2014) Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, a member of the marine roseobacter clade. Appl Environ Microbiol 80:4725–4737

    Article  PubMed Central  PubMed  Google Scholar 

  • Winkler JD, Garcia C, Olson M, Callaway E, Kao KC (2014) Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 80:3729–3740

    Article  PubMed Central  PubMed  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fabian Grein from the Institute of Microbiology and Biotechnology, University of Bonn, for assisting in microscopic examination of cell cultures. Special thanks to the Higher Education Commission of Pakistan and their German collaborators DAAD for financial support (scholarship for NZ). We thank Elisabeth Schwab and Marlene Hecker for technical assistance.

Conflict of interest

There is no conflict of interest for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, N., Schweiger, P., Galinski, E. et al. Identification of mannitol as compatible solute in Gluconobacter oxydans . Appl Microbiol Biotechnol 99, 5511–5521 (2015). https://doi.org/10.1007/s00253-015-6626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6626-x

Keywords

Navigation