Skip to main content
Log in

Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, Butler M, Budman HM (2014) Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol 186:98–109

    Article  CAS  PubMed  Google Scholar 

  • Bradley G, Naudé RJ, Muramoto K, Yamauchi F, Oelofsen W (1996) Ostrich (Struthio camelus) carboxypeptidase B: Purification, kinetic properties and characterization of the pancreatic enzyme. Int J Biochem Cell Biol 28(5):521–529

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Pan H, Flynn GC (2011) C-terminal lysine processing of human immunoglobulin G2 heavy chain in vivo. Biotechnol Bioeng 108(2):404–412

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Cocom LM, Genel-Rey T, Araiz-Hernandez D, Lopez-Pacheco F, Lopez-Meza J, Rocha-Pizana MR, Ramirez-Medrano A, Alvarez MM (2014) Amino acid consumption in naive and recombinant CHO cell cultures: producers of a monoclonal antibody. Cytotechnology. doi:10.1007/s10616-014-9720-5

    PubMed  Google Scholar 

  • Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549

    Article  CAS  PubMed  Google Scholar 

  • deZengotita VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO2 and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77(4):369–380

    Article  CAS  PubMed  Google Scholar 

  • Dick LW Jr, Qiu D, Mahon D, Adamo M, Cheng KC (2008) C-terminal lysine variants in fully human monoclonal antibodies: investigation of test methods and possible causes. Biotechnol Bioeng 100(6):1132–1143

    Article  CAS  PubMed  Google Scholar 

  • Dietmair S, Timmins NE, Gray PP, Nielsen LK, Krömer JO (2010) Towards quantitative metabolomics of mammalian cells: Development of a metabolite extraction protocol. Anal Biochem 404(2):155–164

    Article  CAS  PubMed  Google Scholar 

  • Dorai H, Ganguly S (2014) Mammalian cell-produced therapeutic proteins: heterogeneity derived from protein degradation. Curr Opin Biotechnol 30:198–204

    Article  CAS  PubMed  Google Scholar 

  • Edwards LJ, Williams DA, Gardner DK (1998) Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod 13(12):3441–3448

    Article  CAS  PubMed  Google Scholar 

  • Falconer RJ, Chan C, Hughes K, Munro TP (2011) Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. J Chem Technol Biotechnol 86(7):942–948

    Article  CAS  Google Scholar 

  • Fan Y, Jimenez Del Val I, Muller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112(3):521–535

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Leal IJ, Carrillo-Cocom LM, Ramirez-Medrano A, Lopez-Pacheco F, Bulnes-Abundis D, Webb-Vargas Y, Alvarez MM (2011) Use of a Plackett-Burman statistical design to determine the effect of selected amino acids on monoclonal antibody production in CHO cells. Biotechnol Prog 27(6):1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Greene D, Das B, Fricker LD (1992) Regulation of carboxypeptidase E. Effect of pH, temperature and Co2+ on kinetic parameters of substrate hydrolysis. Biochem J 285:613–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen H, Emborg C (1994) Extra-and intracellular amino acid concentrations in continuous Chinese hamster ovary cell culture. Appl Microbiol Biotechnol 41(5):560–564

    Article  CAS  PubMed  Google Scholar 

  • Harris RJ (1995) Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J Chromatogr A 705(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Hook V, LaGamma E (1987) Product inhibition of carboxypeptidase H. J Biol Chem 262(26):12583–12588

    CAS  PubMed  Google Scholar 

  • Hook VY (1988) Regulation of carboxypeptidase H by inhibitory and stimulatory mechanisms during neuropeptide precursor processing. Cell Mol Neurobiol 8(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Hook VY (1990) Arginine and lysine product inhibition of bovine adrenomedullary carboxypeptidase H, a prohormone processing enzyme. Life Sci 47(13):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Jeong DW, Cho IT, Kim TS, Bae GW, Kim IH, Kim IY (2006) Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism. Mol Cell Biochem 284(1-2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Huang Y, Sharfstein ST (2006) Regulation of recombinant monoclonal antibody production in chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22(1):313–318

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Borys M, Nayak S, Egan S, Qian Y, Pan S-H, Li ZJ (2012) Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochem 47(1):69–75

    Article  CAS  Google Scholar 

  • Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Zhang J, Ren D, Tsai WL, Li F, Amanullah A, Hudson T (2012) Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng 109(9):2306–2315

    Article  CAS  PubMed  Google Scholar 

  • Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Chang G, Kita A, Andrien B, Liu H (2014) In vitro and in vivo modifications of recombinant and human IgG antibodies. mAbs 6(5):1–11

    Google Scholar 

  • Rouiller Y, Solacroup T, Deparis V, Barbafieri M, Gleixner R, Broly H, Eon-Duval A (2012) Application of Quality by Design to the characterization of the cell culture process of an Fc-Fusion protein. Eur J Pharm Biopharm 81(2):426–437

    Article  CAS  PubMed  Google Scholar 

  • Schenerman MA, Sunday BR, Kozlowski S, Webber K, Gazzano-Santoro H, Mire-Sluis A (2004) CMC strategy forum report. BioProc Int 2(2):42–52

    Google Scholar 

  • Sun Y-t, Zhao L, Ye Z, Fan L, Liu X-p, Tan W-S (2013) Development of a fed-batch cultivation for antibody-producing cells based on combined feeding strategy of glucose and galactose. Biochem Eng J 81:126–135

    Article  CAS  Google Scholar 

  • Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9(6):468–481

    Article  CAS  PubMed  Google Scholar 

  • Wolff EC, Schirmer E, Folk J (1962) The kinetics of carboxypeptidase B activity I. Kinetic parameters. J Biol Chem 237(10):3094–3099

    CAS  PubMed  Google Scholar 

  • Wong DC, Wong NS, Goh JS, May LM, Yap MG (2010a) Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures. Biotechnol Bioeng 107(3):516–528

    Article  CAS  PubMed  Google Scholar 

  • Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010b) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Butler M (2000) Enhanced erythropoietin heterogeneity in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotechnology 34(1-2):83–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu XC, Borisov OV, Alvarez M, Michels DA, Wang YJ, Ling V (2009) Identification of codon-specific serine to asparagine mistranslation in recombinant monoclonal antibodies by high-resolution mass spectrometry. Anal Chem 81(22):9282–9290

    Article  CAS  PubMed  Google Scholar 

  • Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RP, Luo J, Gawlitzek M, Joly JC (2015) Effects of copper on CHO cells: Cellular requirements and product quality considerations. Biotechnol Prog 31(1):226–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21406066, 21206040), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A303).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Song Tan or Li Fan.

Additional information

Xintao Zhang and Hongping Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tang, H., Sun, YT. et al. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures. Appl Microbiol Biotechnol 99, 6643–6652 (2015). https://doi.org/10.1007/s00253-015-6617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6617-y

Keywords

Navigation