Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 17, pp 7241–7252 | Cite as

A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105

  • Yang Yang
  • Hui-Jun Wu
  • Ling Lin
  • Qing-qing Zhu
  • Rainer Borriss
  • Xue-Wen Gao
Applied microbial and cell physiology

Abstract

According to the change of environment, soil-dwelling Bacillus species differentiate into distinct subpopulations, such as spores and competent cells. Rap-Phr systems have been found to be involved in this differentiation circuit by interacting with major regulatory proteins, such as Spo0A, ComA, and DegU. In this study, we report that the plasmid-born RapQ-PhrQ system found in Bacillus amyloliquefaciens B3 affects three regulatory pathways in the heterologous host Bacillus subtilis. Expression of rapQ in B. subtilis OKB105 strongly suppressed its sporulation efficiency, transformation efficiency, and surfactin production. Co-expression of phrQ or addition of synthesized PhrQ pentapeptide in vitro could compensate for the suppressive effects caused by rapQ. We also found that expression of rapQ decreased the transcriptional level of the sporulation-related gene spoIIE and surfactin synthesis-related gene srfA; meanwhile, the transcriptional levels of these genes could be rescued by co-expression of phrQ and in vitro addition of PhrQ pentapeptide. Electrophoretic mobility shift (EMSA) result also showed that RapQ could bind to ComA without interacting with ComA binding to DNA, and PhrQ pentapeptide antagonized RapQ activity in vitro. These results indicate that this new plasmid-born RapQ-PhrQ system controls sporulation, competent cell formation, and surfactin production in B. subtilis OKB105.

Keywords

Rap-Phr system Bacillus subtilis Sporulation Surfactin Genetic competence 

Notes

Acknowledgments

This work was supported by grants from the Agro-scientific Research in the Public Interest (20130315), the Special Fund for the Fundamental Research Funds for the Central Universities (KYZ201404), the National Natural Science Foundation of China (31100056, 31471811), the Doctoral Fund of Ministry of Education of China (20100097120011), and the National High-tech R&D Program of China (2012AA101504).

Ethical statement/conflict of interest

I hereby certify that this paper consists of original, unpublished work which is not under consideration for publication elsewhere and all the authors listed have approved the manuscript that is enclosed.

References

  1. Auchtung JM, Lee CA, Grossman AD (2006) Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 188(14):5273–5285PubMedCentralCrossRefPubMedGoogle Scholar
  2. Baker MD, Neiditch MB (2011) Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol 9(12), e1001226PubMedCentralCrossRefPubMedGoogle Scholar
  3. Boguslawski KM, Hill PA, Griffith KL (2015) Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap6-Phr60 in Bacillus subtilis. Mol Microbiol (Accepted, unedited articles published online and citable)Google Scholar
  4. Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M (2005) Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J Bacteriol 187(13):4353–4361PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bongiorni C, Stoessel R, Shoemaker D, Perego M (2006) Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188(2):487–498PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cooper D, Macdonald C, Duff S, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42(3):408–412PubMedCentralPubMedGoogle Scholar
  7. Core L, Perego M (2003) TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 49(6):1509–1522CrossRefPubMedGoogle Scholar
  8. del Sol FG, Marina A (2013) Structural basis of Rap phosphatase inhibition by Phr peptides. PLoS Biol 11(3), e1001511CrossRefGoogle Scholar
  9. D’Souza C, Nakano MM, Zuber P (1994) Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91(20):9397–9401PubMedCentralCrossRefPubMedGoogle Scholar
  10. Dunn AK, Handelsman J (1999) A vector for promoter trapping in Bacillus cereus. Gene 226(2):297–305CrossRefPubMedGoogle Scholar
  11. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1(2):117–126CrossRefPubMedGoogle Scholar
  12. Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 97(14):8063–8068PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fujita M, González-Pastor JE, Losick R (2005) High-and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187(4):1357–1368PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gur E, Biran D, Ron EZ (2011) Regulated proteolysis in Gram-negative bacteria—how and when? Nat Rev Microbiol 9(12):839–848CrossRefPubMedGoogle Scholar
  15. Hamoen LW, Eshuis H, Jongbloed J, Venema G, Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15(1):55–63CrossRefPubMedGoogle Scholar
  16. Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59(6):1714–1729CrossRefPubMedGoogle Scholar
  17. Jiang M, Grau R, Perego M (2000) Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 182(2):303–310PubMedCentralCrossRefPubMedGoogle Scholar
  18. Koetje EJ, Hajdo-Milasinovic A, Kiewiet R, Bron S, Tjalsma H (2003) A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology 149(1):19–28CrossRefPubMedGoogle Scholar
  19. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204(1):1–8CrossRefPubMedGoogle Scholar
  20. Krishnappa L, Monteferrante CG, van Dijl JM (2012) Degradation of the twin-arginine translocation substrate YwbN by extracytoplasmic proteases of Bacillus subtilis. Appl Environ Microbiol 78(21):7801–7804PubMedCentralCrossRefPubMedGoogle Scholar
  21. Kunst F, Ogasawara N, Moszer I, Albertini A, Go A, Azevedo V, Bertero M, Bessieres P, Bolotin A, Borchert S (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256CrossRefPubMedGoogle Scholar
  22. Landy M, Warren GH, RosenmanM SB, Colio LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Exp Biol Med (Maywood) 67(4):539–541CrossRefGoogle Scholar
  23. Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13(10):943–949CrossRefGoogle Scholar
  24. López D, Kolter R (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34(2):134–149CrossRefPubMedGoogle Scholar
  25. López D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci U S A 106(1):280–285PubMedCentralCrossRefPubMedGoogle Scholar
  26. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163CrossRefPubMedGoogle Scholar
  27. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529CrossRefPubMedGoogle Scholar
  28. Mäder U, Antelmann H, Buder T, Dahl M, Hecker M, Homuth G (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics 268(4):455–467CrossRefPubMedGoogle Scholar
  29. McQuade RS, Comella N, Grossman AD (2001) Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor Sigma-H of Bacillus subtilis. J Bacteriol 183(16):4905–4909PubMedCentralCrossRefPubMedGoogle Scholar
  30. Mirouze N, Parashar V, Baker MD, Dubnau DA, Neiditch MB (2011) An atypical Phr peptide regulates the developmental switch protein RapH. J Bacteriol 193(22):6197–6206PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nakano MM, Marahiel M, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170(12):5662–5668PubMedCentralPubMedGoogle Scholar
  32. Nakano M, Magnuson R, Myers A, Curry J, Grossman A, Zuber P (1991a) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173(5):1770–1778PubMedCentralPubMedGoogle Scholar
  33. Nakano MM, Xia LA, Zuber P (1991b) Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 173(17):5487–5493PubMedCentralPubMedGoogle Scholar
  34. Ogura M, Yamaguchi H, K-i Y, Fujita Y, Tanaka T (2001) DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B subtilis two-component regulatory systems. Nucleic Acids Res 29(18):3804–3813Google Scholar
  35. Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T (2003) Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49(6):1685–1697CrossRefPubMedGoogle Scholar
  36. Parashar V, Mirouze N, Dubnau DA, Neiditch MB (2011) Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 9(2), e1000589PubMedCentralCrossRefPubMedGoogle Scholar
  37. Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013) A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195(10):2437–2448PubMedCentralCrossRefPubMedGoogle Scholar
  38. Perego M (1997) A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc Natl Acad Sci U S A 94(16):8612–8617PubMedCentralCrossRefPubMedGoogle Scholar
  39. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7(6):579–586CrossRefPubMedGoogle Scholar
  40. Prepiak P, Dubnau D (2007) A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Mol Cell 26(5):639–647PubMedCentralCrossRefPubMedGoogle Scholar
  41. Priest FG, Goodfellow M, Shute LA, Berkeley RCW (1987) Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol 37(1):69–71CrossRefGoogle Scholar
  42. Projan SJ, Carleton S, Novick RP (1983) Determination of plasmid copy number by fluorescence densitometry. Plasmid 9(2):182–190CrossRefPubMedGoogle Scholar
  43. Qiao JQ, Tian DW, Huo R, Wu HJ, Gao XW (2011) Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2):141–149CrossRefPubMedGoogle Scholar
  44. Schaeffer P, Millet J, Aubert J-P (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54(3):704PubMedCentralCrossRefPubMedGoogle Scholar
  45. Smits WK, Bongiorni C, Veening JW, Hamoen LW, Kuipers OP, Perego M (2007) Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Mol Microbiol 65(1):103–120CrossRefPubMedGoogle Scholar
  46. Sonenshein AL (2000) Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3(6):561–566CrossRefPubMedGoogle Scholar
  47. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44(10):1072PubMedCentralCrossRefPubMedGoogle Scholar
  48. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857CrossRefPubMedGoogle Scholar
  49. Stephenson S, Mueller C, Jiang M, Perego M (2003) Molecular analysis of Phr peptide processing in Bacillus subtilis. J Bacteriol 185(16):4861–4871PubMedCentralCrossRefPubMedGoogle Scholar
  50. Sullivan MA, Yasbin RE, Young FE (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29(1):21–26CrossRefPubMedGoogle Scholar
  51. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63(2):479–506PubMedCentralPubMedGoogle Scholar
  52. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515–547PubMedCentralCrossRefPubMedGoogle Scholar
  53. Veening J-W, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP (2008) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4(1)Google Scholar
  54. Wu H, Qiao J, Blom J, Rueckert C, Reva O, Gao X, Borriss R (2013) The rhizobacterium Bacillus amyloliquefaciens subsp. plantarum NAU-B3 contains a large inversion within the central portion of the genome. Genome Announc 1(6)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yang Yang
    • 1
    • 2
  • Hui-Jun Wu
    • 1
    • 2
  • Ling Lin
    • 1
    • 2
  • Qing-qing Zhu
    • 1
    • 2
  • Rainer Borriss
    • 3
  • Xue-Wen Gao
    • 1
    • 2
  1. 1.Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingPeople’s Republic of China
  3. 3.ABiTEP GmbHBerlinGermany

Personalised recommendations