Applied Microbiology and Biotechnology

, Volume 99, Issue 10, pp 4175–4199 | Cite as

Characterization of the intestinal microbiota and its interaction with probiotics and health impacts

  • Carine Nunes de Almada
  • Caroline Nunes de Almada
  • Rafael Chacon Ruiz Martinez
  • Anderson de Souza Sant’AnaEmail author


The gastrointestinal tract (GIT) is a dynamic microecosystem containing a diversified microbiota of about 500–1000 different microbial species. Humans depend on their intestinal microbiota to carry out vital functions, and thus, equilibrium among intestinal groups of microorganisms is essential. In this review article, the use of traditional and molecular methods is discussed for the characterization of the intestinal microbiota, as well as its interaction with probiotics and their effects on health. An improved knowledge on intestinal microbiota composition and diversity and how changes in this microecosystem can cause or are associated with diseases remains far from being completely understood. Therefore, a better understanding of the GIT microbial populations is crucial, which will certainly contribute to the development of new strategies for the prevention and/or treatment of several diseases. The manipulation of the GIT microbiota by probiotics consumption is an interesting approach to maintain and restore human health.


Gut Microbiota Diseases Probiotics Immune system 



The authors thank the financial support provided by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico - Project 400806/2013-4).


  1. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938PubMedGoogle Scholar
  2. Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106:506–514PubMedGoogle Scholar
  3. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005PubMedCentralPubMedGoogle Scholar
  4. Almeida MHB, Zoellner SS, Da Cruz AG, Moura MRL, Carvalho LMJ, Freitas MCJ, Sant’Ana AS (2008) Potentially probiotic açaí yogurt. Int J Dairy Technol 61:178–182Google Scholar
  5. Almeida CC, Lorena SLS, Pavan CR, Akasaka HMI, Mesquita MA (2012) Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr Clin Pract 27:247–251PubMedGoogle Scholar
  6. Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M (2008) Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet 33:101–106PubMedGoogle Scholar
  7. Al-Saleh AA, Metwalli AAM, Abu-Tarboush HM (2006) Bile salts and acid tolerance and cholesterol removal from media by some lactic acid bacteria and bifidobacteria. J Saudi Soc Food Nutr 1:1–17Google Scholar
  8. Alvaro E, Andrieux C, Rochet V, Rigottier-Gois L, Lepercq P, Sutren M, Galan P, Duval Y, Juste C, Dore J (2007) Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br J Nutr 97:126–133PubMedGoogle Scholar
  9. Amit-Romach E, Uni Z, Reifen R (2010) Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res 54:277–284PubMedGoogle Scholar
  10. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10:1–11Google Scholar
  11. Ataie-Jafari A, Larijani B, Majd HA, Tahbaz F (2009) Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab 54:22–27PubMedGoogle Scholar
  12. Bach J-F (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920PubMedGoogle Scholar
  13. Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R, Corinaldesi R (2005) Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 100:2560–2568PubMedGoogle Scholar
  14. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorent C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174PubMedGoogle Scholar
  15. Bhardwaj A, Bhardwaj SV (2012) Role of probiotics in dental caries and periodontal disease. Arch Clin Exp Surg 1:45–49Google Scholar
  16. Bigliardi B, Galati F (2013) Innovation trends in food industry: the case of functional foods. Trends Food Sci Technol 31:118–129Google Scholar
  17. Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108:516–520PubMedGoogle Scholar
  18. Boerner BP, Sarvetnick NE (2011) Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 1243:103–118PubMedGoogle Scholar
  19. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gastroenterol 44:26–46PubMedGoogle Scholar
  20. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 20:16050–16055Google Scholar
  21. Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479PubMedGoogle Scholar
  22. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, Gobejishvili L, Joshi-Barve S, Ayvaz T, Petrosino J, Kong M, Barker D, McClain C, Barve S (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PloS One 8, e53028PubMedCentralPubMedGoogle Scholar
  23. Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y (2010) Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog 2:1–9Google Scholar
  24. Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178PubMedGoogle Scholar
  25. Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68:2672–2678PubMedGoogle Scholar
  26. Collado MC, Calabuig M, Sanz Y (2007) Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol 8:9–14PubMedGoogle Scholar
  27. Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78PubMedGoogle Scholar
  28. Da Cruz AG, Fonseca Faria JDA, Isay Saad SM, André Bolini HM, Sant’Ana AS, Cristianini M (2010) High pressure processing and pulsed electric fields: potential use in probiotic dairy foods processing. Trends Food Sci Technol 21:483–493Google Scholar
  29. De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259:89–96PubMedGoogle Scholar
  30. De Sousa Moraes LF, Grzeskowiak LM, De Sales Teixeira TF, Gouveia Peluzio MDC (2014) Intestinal microbiota and probiotics in celiac disease. Clin Microbiol Rev 27:482–489PubMedGoogle Scholar
  31. Del Campo R, Garriga M, Pérez-Aragón A, Guallarte P, Lamas A, Máiz L, Bayón C, Roy G, Cantón R, Zamora J, Baquero F, Suárez L (2014) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13:716–722PubMedGoogle Scholar
  32. Delmont TO, Simonet P, Vogel TM (2012) Describing microbial communities and performing global comparisons in the ‘omic era. ISME J 6:1625–1628PubMedCentralPubMedGoogle Scholar
  33. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:2383–2400Google Scholar
  34. Dolin BJ (2009) Effects of a proprietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome. Methods Find Exp Clin Pharmacol 31:655–659PubMedGoogle Scholar
  35. Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171PubMedCentralGoogle Scholar
  36. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625PubMedGoogle Scholar
  37. Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P (2014) Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 54:175–189PubMedGoogle Scholar
  38. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCentralPubMedGoogle Scholar
  39. Engelbrektson A, Korzenik JR, Pittler A, Sanders ME, Klaenhammer TR, Leyer G, Kitts CL (2009) Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 58:663–670PubMedGoogle Scholar
  40. Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140PubMedGoogle Scholar
  41. FAO/WHO (2002) Working group report on drafting guidelines for the evaluation of probiotics in food. Canada Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO), Ontario. Available at: Accessed 30 Jul 2014
  42. Feligini M, Panelli S, Sacchi R, Ghitti M, Capelli E (2015) Tracing the origin of raw milk from farm by using Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting of microbiota. Food Control 50:51–56Google Scholar
  43. Ferguson RM, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S, Balcazar JL, Davies SJ (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J Appl Microbiol 109:851–862PubMedGoogle Scholar
  44. Filteau M, Matamoros S, Savard P, Roy D (2013) Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. Pharma Nutr 1:123–129Google Scholar
  45. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35:S6–S16PubMedGoogle Scholar
  46. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88:S39–S49PubMedGoogle Scholar
  47. Fuentes S, Egert M, Jiménez-Valera M, Ramos-Cormenzana A, Ruiz-Bravo A, Smidt H, Monteoliva-Sanchez M (2008) Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res Microbiol 159:237–243PubMedGoogle Scholar
  48. García-Albiach R, Pozuelo de Felipe MJ, Ângulo S, Morosini MI, Bravo D, Baquero F, Del Campo R (2008) Molecular analysis of yogurt containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in human intestinal microbiota. Am J Clin Nutr 87:91–96PubMedGoogle Scholar
  49. Garrido D, Suau A, Pochart P, Cruchet S, Gotteland M (2005) Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiol Lett 248:249–256PubMedGoogle Scholar
  50. Gerritsen J, Smidt H, Rijkers GT, Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240PubMedCentralPubMedGoogle Scholar
  51. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  52. Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3:347–371PubMedGoogle Scholar
  53. Gómez-Llorente C, Muñoz S, Gil A (2010) Role of Toll-like receptors in the development of immunotolerance mediated by probiotics. Proc Nutr Soc 69:381–389PubMedGoogle Scholar
  54. González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M, Margolles A (2012) Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78:3992–3998PubMedCentralPubMedGoogle Scholar
  55. Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE 6:e17447PubMedCentralPubMedGoogle Scholar
  56. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519PubMedGoogle Scholar
  57. Gueimonde M, Collado MC (2012) Metagenomics and probiotics. Clin Microbiol Infect 18:32–34PubMedGoogle Scholar
  58. Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6:295–308Google Scholar
  59. Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113:723–736PubMedGoogle Scholar
  60. He T, Priebe MG, Zhong Y, Huang C, Harmsen HJM, Raangs GC, Antoine JM, Welling GW, Vonk RJ (2008) Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J Appl Microbiol 104:595–604PubMedGoogle Scholar
  61. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374S–379SPubMedGoogle Scholar
  62. Heller MJ (2002) DNA microarray technology: devices, systems and applications. Annu Rev Biomed Eng 4:129–153PubMedGoogle Scholar
  63. Herfel TM, Jacobi SK, Lin X, Jouni ZE, Chichlowski M, Stahl CH, Odle J (2013) Dietary supplementation of Bifidobacterium longum strain AH1206 increases its cecal abundance and elevates intestinal interleukin-10 expression in the neonatal piglet. Food Chem Toxicol 60:116–122PubMedGoogle Scholar
  64. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepathol 11:506–514Google Scholar
  65. Hooda S, Boler BMV, Serao MCR, Brulc JM, Staeger MA, Boileau TW, Dowd SE, Fahey GC Jr, Swanson KS (2012) 454 Pyrosequencing reveals a shift in faecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 142:1259–1265PubMedGoogle Scholar
  66. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884PubMedGoogle Scholar
  67. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273PubMedGoogle Scholar
  68. Hougee S, Vriesema AJ, Wijering SC, Knippels LM, Folkerts G, Nijkamp FP, Knol J, Garssen J (2010) Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 151:107–117PubMedGoogle Scholar
  69. Howarth GS, Wang H (2013) Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5:58–81PubMedCentralPubMedGoogle Scholar
  70. Huang Y, Wang J, Cheng Y, Zheng Y (2010) The hypocholesterolaemic effects of Lactobacillus acidophilus American Type Culture Collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-Like 1. Br J Nutr 104:807–812PubMedGoogle Scholar
  71. Hun L (2009) Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad Med 121:119–124PubMedGoogle Scholar
  72. Im E, Choi YJ, Pothoulakis C, Rhee SH (2009) Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J Nutr 139:1848–1854PubMedCentralPubMedGoogle Scholar
  73. Jauhiainen T, Collin M, Narva M, Cheng ZJ, Poussa T, Vapaatalo H, Korpela R (2005) Effect of long-term intake of milk peptides and minerals on blood pressure and arterial function in spontaneously hypertensive rats. Milchwissenschaft 60:358–363Google Scholar
  74. Jensen GS, Benson KF, Carter SG, Endres JR (2010) GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol 11:1–15Google Scholar
  75. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637PubMedGoogle Scholar
  76. Kajander K, Myllyluoma E, Rajili´c –Stojanovi´c M, Kyronpalo S, Rasmussen M, Jarvenpaa S, Zoetendal EG, Vos WMD, Vapaatalo H, Korpela R (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57PubMedGoogle Scholar
  77. Kerckhoffs AP, Samsom M, Van der Rest ME, De Vogel J, Knol J, Ben-Amor K, Akkermans LM (2009) Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol 15:2887–2892PubMedCentralPubMedGoogle Scholar
  78. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330PubMedCentralPubMedGoogle Scholar
  79. Kim Y, Lee D, Kim D, Cho J, Yang J, Chung M, Kim K, Ha N (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 31:468–473PubMedGoogle Scholar
  80. Kimmel M, Keller D, Farmer S, Warrino DE (2010) A controlled clinical trial to evaluate the effect of GanedenBC30 on immunological markers. Methods Find Exp Clin Pharmacol 32:129–132PubMedGoogle Scholar
  81. Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32:1–7PubMedGoogle Scholar
  82. Kirjavainen PV, Salminen SJ, Isolauri E (2003) Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. J Pediatr Gastroenterol Nutr 36:223–227PubMedGoogle Scholar
  83. Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25PubMedGoogle Scholar
  84. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499PubMedGoogle Scholar
  85. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G (2005) Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30:55–60Google Scholar
  86. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181PubMedCentralPubMedGoogle Scholar
  87. Lahtinen SJ, Tammela L, Korpela J, Parhiala R, Ahokoski H, Mykkä nen H, Salminen SJ (2009) Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age 31:59–66PubMedCentralPubMedGoogle Scholar
  88. Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological Pathways. Cardiovasc Res 97:612–622PubMedCentralPubMedGoogle Scholar
  89. Lebeer S, Vanderleyden J, De Keersmaecker CJ (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184PubMedGoogle Scholar
  90. Lee NK, Park JS, Park E, Paik HD (2007) Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett Appl Microbiol 44:274–278PubMedGoogle Scholar
  91. Lee J, Rheem S, Yun B, Ahn Y, Joung J, Lee SJ, Oh S, Chun T, Rheem I, Yea HS, Lim KS, Cha JM, Kim S (2013) Effects of probiotic yoghurt on symptoms and intestinal microbiota in patients with irritable bowel syndrome. Int J Dairy Technol 66:243–255Google Scholar
  92. Lee J-Y, Chu S-H, Jeon JY, Lee M-K, Park J-H, Lee D-C, Lee J-W, Kim N-K (2014) Effects of 12 weeks of probiotic supplementation on quality of life in colorectal cancer survivors: a double-blind, randomized, placebo-controlled trial. Dig Liver Dis 46:1126–1132PubMedGoogle Scholar
  93. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Dore J (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158PubMedGoogle Scholar
  94. Levy M, Thaiss CA, Elinav E (2014) The microbiota: a new player in the etiology of colorectal cancer. Curr Colorectal Cancer Rep 10:1–8Google Scholar
  95. Li F, Hullar MA, Lampe JW (2007) Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J Microbiol Methods 68:303–311PubMedCentralPubMedGoogle Scholar
  96. Lutgendorff F, Akkermans LMA, Söderholm JD (2008) The role of microbiota and probiotics in stress-induced gastrointestinal damage. Curr Mol Med 8:282–298PubMedGoogle Scholar
  97. Maathuis AJH, Keller D, Farmer S (2010) Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Benefic Microbes 1:31–36Google Scholar
  98. Maekawa T, Hajishengallis G (2014) Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res 49:785–791PubMedGoogle Scholar
  99. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, Servin A, DeVuyst L (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157:241–247PubMedGoogle Scholar
  100. Malinen E, Krogius-Kurikka L, Lyra A, Nikkıla J, Jaaskelainen A, Rinttila T, Vilpponen-Salmela T, Von Wright AJ, Palva A (2010) Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol 16:4532–4540PubMedCentralPubMedGoogle Scholar
  101. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211PubMedCentralPubMedGoogle Scholar
  102. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  103. Martinez RCR, Seney SL, Summers KL, Nomizo A, De Martinis ECP, Reid G (2009) Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol 53:487–495PubMedGoogle Scholar
  104. Martinez RCR, Cardarelli H, Borst W, Albrecht S, Schols H, Gutiérrez OP, Maathuis A, Franco BDGM, De Martinis ECP, Zoetendal E, Venema K, Saad SMI, Smidt H (2013) Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 84:110–123PubMedGoogle Scholar
  105. Marzotto M, Maffeis C, Paternoster T, Ferrario R, Rizzotti L, Pellegrino M, Dellaglio F, Torriani S (2006) Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Res Microbiol 157:857–866PubMedGoogle Scholar
  106. Mättö J, Maunuksela L, Kajander K, Palva A, Korpela R, Kassinen A, Saarela M (2005) Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43:213–222PubMedGoogle Scholar
  107. Maukonen J, Satokari R, Matto J, So derlund H, Mattila-Sandholm T, Saarela M (2006) Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J Med Microbiol 55:625–633PubMedGoogle Scholar
  108. McCartney AL (2002) Application of molecular biological methods for studying probiotics and the gut flora. Br J Nutr 88:S29–S37PubMedGoogle Scholar
  109. Medici M, Vinderola CG, Perdigón G (2004) Gut mucosal immunomodulation by probiotic fresh cheese. Int Dairy J 14:611–618Google Scholar
  110. Messaoudi M, Violle N, Bisson J, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261PubMedGoogle Scholar
  111. Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:1–7Google Scholar
  112. Mirzaei H, Shahirfar H, Mobayen H (2012) Effect of consumption of fermented milk with Lactobacillus casei and Lactobacillus plantarum isolated from ligvan cheese against E. coli O157:H7 induced infections in BALB/C mice. Adv Biores 3:34–38Google Scholar
  113. Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M, Radke M, Blaut M (2006) Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol 44:4025–4031PubMedCentralPubMedGoogle Scholar
  114. Montesi A, García-Albiach R, Pozuelo MJ, Pintado C, Goñi I, Rotger R (2005) Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int J Food Microbiol 98:281–289PubMedGoogle Scholar
  115. Muyzer G (1999) DGGE / TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322PubMedGoogle Scholar
  116. Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310PubMedGoogle Scholar
  117. Ng SC, Lam EFC, Lam TTY, Chan Y, Law W, Tse PCH, Kamm MA, Sung JJY, Chan FKL, Wu JCY (2013) Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J Gastroenterol Hepatol 28:1624–1631PubMedGoogle Scholar
  118. Nielsen DS, Cho GS, Hanak A, Huch M, Franz CM, Arneborg N (2010) The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int J Food Microbiol 141:S53–S59PubMedGoogle Scholar
  119. Nobaek S, Johansson M, Molin G, Ahrné S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238PubMedGoogle Scholar
  120. Nogueira JCR, Gonçalves MCR (2011) Probióticos - Revisão da Literatura. RBCS 15:487–492Google Scholar
  121. O’Mahony L, Mccarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551PubMedGoogle Scholar
  122. O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693PubMedCentralPubMedGoogle Scholar
  123. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819PubMedGoogle Scholar
  124. Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50PubMedGoogle Scholar
  125. Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H, Strandberg T, Pitkälä K, Salminen S (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 53:18–25PubMedGoogle Scholar
  126. Paik H, Park J, Park E (2005) Effects of Bacillus polyfermenticus SCD on Lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull 28:1270–1274PubMedGoogle Scholar
  127. Palomar MM, Galdeano CM, Perdigón G (2013) Influence of a probiotic Lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immun 35:77–85PubMedGoogle Scholar
  128. Paul J, Verma AK, Verma R (2007) Role of gut flora in inflammatory bowel disease: a state of art. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Madrid, pp 705–718Google Scholar
  129. Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427PubMedCentralPubMedGoogle Scholar
  130. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C (2011) Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 5:71–86PubMedCentralPubMedGoogle Scholar
  131. Preidis GA, Saulnier DM, Blutt SE, Mistretta T, Riehle KP, Major AM, Venable SF, Finegold MJ, Petrosino JF, Conner ME, Versalovic J (2012) Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J26:1960–1969Google Scholar
  132. Rajilic-Stojanovic M (2013) Function of the microbiota. Best Pract Res Clin Gastroenterol 27:5–16PubMedGoogle Scholar
  133. Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136PubMedGoogle Scholar
  134. Ramos MA, Weber B, Gonçalves JF, Santos GA, Rema P, Ozório ROA (2013) Dietary probiotic supplementation modulated gut microbiota and improved growth of juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A 166:302–307Google Scholar
  135. Rampelli S, Candela M, Severgnini M, Biagi E, Turroni S, Roselli M, Carnevali P, Donini L, Brigidi P (2013) A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J Nutr Health Aging 17:166–172PubMedGoogle Scholar
  136. Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43:1–7Google Scholar
  137. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1:1–6Google Scholar
  138. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer Science + Business Media LLC, New York, pp 29–57Google Scholar
  139. Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, Kudo S, Lenoir-Wijnkoop I, Mercenier A, Myllyluoma E, Rabot S, Rafter J, Szajewska H, Watzl B, Wells J, Wolvers D, Antoine JM (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr 140:671S–676SPubMedGoogle Scholar
  140. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341PubMedGoogle Scholar
  141. Rolfe RD (1991) Population dynamics of the intestinal tract. In: Blankenship LC (ed) Colonization control of human bacterial enteropathogens in poultry. Academic Press, San Diego, pp 59–75Google Scholar
  142. Russell WR, Duncan SH (2013) Advanced analytical methodologies to study the microbial metabolome of the human gut. Trends Analyt Chem 52:54–60Google Scholar
  143. Salminen S, Gueimonde M, Isolauri E (2005) Probiotics that modify disease risk. J Nutr 135:1294–1298PubMedGoogle Scholar
  144. Sanders ME, Gibson G, Gill HS, Guarner F (2007) Probiotics: their potential to impact human health. CAST 36. Available at: Accessed 16 Oct 2014
  145. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407PubMedGoogle Scholar
  146. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM (2001) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231PubMedGoogle Scholar
  147. Scanlan PD, Shanahan F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, Holmes E, Wang Y, Marchesi JR (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10:789–798PubMedGoogle Scholar
  148. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904PubMedGoogle Scholar
  149. Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77:326–330PubMedGoogle Scholar
  150. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277Google Scholar
  151. Sindhu SC, Khetarpaul N (2003) Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr Res 23:1071–1080Google Scholar
  152. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380PubMedGoogle Scholar
  153. Staliano CD, Martinez RCR, Saad SMI (2015) Beneficial microorganisms viability and sensory acceptance of a potentially synbiotic dairy-based tomato spread. LWT Food Sci Technol 62:682–688Google Scholar
  154. Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003PubMedGoogle Scholar
  155. Sun Y-Z, Yang H-L, Ma R-L, Song K, Lin W-Y (2011) Molecular analysis of autochthonous microbiota along the digestive tract of juvenile grouper Epinephelus coioides following probiotic Bacillus pumilus administration. J Appl Microbiol 110:1093–1103PubMedGoogle Scholar
  156. Suzuki S, Shimojo N, Tajiri Y, Kumemura M, Kohno Y (2007) Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clin Exp Allergy 37:506–511PubMedGoogle Scholar
  157. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67:1421–1424PubMedGoogle Scholar
  158. Tachon S, Lee B, Marco ML (2014) Diet alters probiotic Lactobacillus persistence and function in the intestine. Environ Microbiol 16:2915–2926PubMedGoogle Scholar
  159. Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M, Kurokawa M (2011) Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol 11:1976–1983PubMedGoogle Scholar
  160. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588PubMedCentralPubMedGoogle Scholar
  161. Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC (2013) Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol 40:1025–1035PubMedCentralPubMedGoogle Scholar
  162. Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31:571–576PubMedGoogle Scholar
  163. Tilg H, Moschen AR, Kaser A (2009) Obesity and the microbiota. Gastroenterology 136:1476–1483PubMedGoogle Scholar
  164. Tsai Y-T, Cheng P-C, Pan T-M (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 96:853–862PubMedGoogle Scholar
  165. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedGoogle Scholar
  166. Valásková V, Baldrian P (2009) Denaturing gradient gel electrophoresis as a fingerprinting method for the analysis of soil microbial communities. Plant Soil Environ 55:413–423Google Scholar
  167. Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, Huys G (2006) Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol 72:5990–5997Google Scholar
  168. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, Vliegb JETV, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garrett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci U S A 107:18132–18137PubMedCentralPubMedGoogle Scholar
  169. Ventura M, Elli M, Reniero R, Zink R (2001) Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol 36:113–121PubMedGoogle Scholar
  170. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189PubMedGoogle Scholar
  171. Vergari F, Tibuzzi A, Basile G (2010) An overview of the functional food market: from marketing issues and commercial players to future demand from life in space. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors. Landes Bioscience and Springer Science + Business Media, Austin, pp 308–327Google Scholar
  172. VidyaLaxme B, Rovetto A, Grau R, Agrawal R (2012) Synergistic effects of probiotic Leuconostoc mesenteroides and Bacillus subtilis in malted ragi (Eleucine corocana) food for antagonistic activity against V. cholerae and other beneficial properties. J Food Sci Technol 51:3072–3082Google Scholar
  173. Wang MF, Lin HC, Wang YY, Hsu CH (2004) Treatment of perennial allergic rhinitis with lactic acid bacteria. Pediatr Allergy Immunol 15:152–158PubMedGoogle Scholar
  174. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, Antonopoulos DA, Chang EB, Claud EC (2009) 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 3:944–954PubMedCentralPubMedGoogle Scholar
  175. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703PubMedCentralPubMedGoogle Scholar
  176. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao C, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J (2010) Molecular characterization of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78PubMedGoogle Scholar
  177. Yanine N, Araya I, Brignardello-Petersen R, Carrasco-Labra A, González A, Preciado A, Villanueva J, Sanz M, Martin C (2013) Effects of probiotics in periodontal diseases: a systematic review. Clin Oral Investig 17:1627–1634PubMedGoogle Scholar
  178. Yeon S, You YS, Kwon H, Yang EH, Ryu J, Kang BH, Kang J (2010) Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J Funct Foods 2:143–152Google Scholar
  179. Young VB, Schmidt TM (2004) Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 42:1203–1206PubMedCentralPubMedGoogle Scholar
  180. Zhang J, Wang L, Guo Z, Sun Z, Gesudu Q, Kwok L, Menghebilige, Zhang H (2014) 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang. FEMS Microbiol Ecol 88:612–622PubMedGoogle Scholar
  181. Zhong Y, Priebe MG, Vonk RJ, Huang C-Y, Antoine J-M, He T, Harmsen HJM, Welling GW (2004) The role of colonic microbiota in lactose intolerance. Dig Dis Sci 49:78–83PubMedGoogle Scholar
  182. Zoetendal EG, Mackie RI (2005) Molecular methods in microbial ecology. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Dunedin, pp 1–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carine Nunes de Almada
    • 1
  • Caroline Nunes de Almada
    • 1
  • Rafael Chacon Ruiz Martinez
    • 1
  • Anderson de Souza Sant’Ana
    • 1
    Email author
  1. 1.Department of Food Science, Faculty of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations