Skip to main content

Effectiveness of direct immobilization of bacterial cells onto material surfaces using the bacterionanofiber protein AtaA

Abstract

The bacterionanofiber protein AtaA, a member of the trimeric autotransporter adhesin family found in Acinetobacter sp. Tol 5, is responsible for the nonspecific, high adhesiveness and autoagglutination of this strain. Previously, we introduced the ataA gene into the nonadhesive Acinetobacter strain ST-550, which conferred high adhesiveness to this strain, immobilized its cells, and improved indigo productivity due to enhanced tolerance to the toxic substrate. In this study, we again demonstrated the effectiveness of this new microbial immobilization method using AtaA in a number of conditions. AtaA enabled the effective immobilization of growing, resting, and lyophilized cells of a type strain of Acinetobacter, ADP1, which is also intrinsically nonadhesive, onto the surface of several kinds of support ranging from artificial to natural materials and from hydrophobic polyurethane to hydrophilic glass. Immobilization with AtaA enabled exclusive cell growth in the support space and only a few cells existed in the bulk medium. Immobilization of resting cells drastically increased cell concentration, depending on the support material; dry cells of approximately 110 g/L could be immobilized onto glass wool. Finally, we demonstrated that ADP1 cells immobilized on polyurethane foam can undergo at least 10 repetitive reactions without inactivation during a 5-h period. Even after drying and storing for 3 days, the immobilized cells showed enzymatic activity and an ester hydrolysis reaction was repeated by simply transferring the support with the cells into a fresh reaction buffer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17:157–165

    Article  CAS  Google Scholar 

  2. Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714

    Article  CAS  PubMed  Google Scholar 

  3. Cassidy M, Lee H, Trevors J (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol 16:79–101

    CAS  Google Scholar 

  4. Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    Article  CAS  PubMed  Google Scholar 

  5. Cheng K-C, Demirci A, Catchmark JM (2011) Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol 90:921–927

    Article  CAS  PubMed  Google Scholar 

  6. de Carvalho CC (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83

    Article  PubMed  Google Scholar 

  7. Dervakos GA, Webb C (1991) On the merits of viable-cell immobilization. Biotechnol Adv 9:559–612

    Article  CAS  PubMed  Google Scholar 

  8. Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543–546

    Article  CAS  PubMed  Google Scholar 

  9. Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol 60:720–725

    Article  CAS  PubMed  Google Scholar 

  10. Feng Q, Wang Y, Wang T, Zheng H, Chu L, Zhang C, Chen H, Kong X, Xing X-H (2012) Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors. Bioresour Technol 117:201–207

    Article  CAS  PubMed  Google Scholar 

  11. Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: new catalysts for maximizing productivity of long term biotransformations. Biotechnol Bioeng 98:1123–1134

    Article  CAS  PubMed  Google Scholar 

  12. Gross R, Lang K, Buhler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717

    CAS  PubMed  Google Scholar 

  13. Guo W, Ngo H-H, Dharmawan F, Palmer CG (2010) Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresour Technol 101:1435–1439

    Article  CAS  PubMed  Google Scholar 

  14. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    Article  CAS  PubMed  Google Scholar 

  15. Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Holland HL (1998) Microbial transformations. Curr Opin Chem Biol 2:77–84

    Article  CAS  PubMed  Google Scholar 

  17. Hori K, Yamashita S, Ishii S, Kitagawa M, Tanji Y, Unno H (2001) Isolation, characterization and application to off-gas treatment of toluene-degrading bacteria. J Chem Eng Jpn 34:1120–1126

    Article  CAS  Google Scholar 

  18. Hori K, Ishikawa M, Yamada M, Higuchi A, Ishikawa Y, Ebi H (2011) Production of peritrichate bacterionanofibers and their proteinaceous components by Acinetobacter sp. Tol 5 cells affected by growth substrates. J Biosci Bioeng 111:31–36

    Article  CAS  PubMed  Google Scholar 

  19. Ishii S, Koki J, Unno H, Hori K (2004) Two morphological types of cell appendages on a strongly adhesive bacterium, Acinetobacter sp. strain Tol 5. Appl Environ Microbiol 70:5026–5029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ishii S, Unno H, Miyata S, Hori K (2006) Effect of cell appendages on the adhesion properties of a highly adhesive bacterium, Acinetobacter sp. Tol 5. Biosci Biotechnol Biochem 70:2635–2640

    Article  CAS  PubMed  Google Scholar 

  21. Ishii S, Miyata S, Hotta Y, Yamamoto K, Unno H, Hori K (2008) Formation of filamentous appendages by Acinetobacter sp. Tol 5 for adhering to solid surfaces. J Biosci Bioeng 105:20–25

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa M, Nakatani H, Hori K (2012a) AtaA, a new member of the trimeric autotransporter adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces. PLoS One 7:e48830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ishikawa M, Shigemori K, Suzuki A, Hori K (2012b) Evaluation of adhesiveness of Acinetobacter sp. Tol 5 to abiotic surfaces. J Biosci Bioeng 113:719–725

    Article  CAS  PubMed  Google Scholar 

  24. Ishikawa M, Shigemori K, Hori K (2014) Application of the adhesive bacterionanofiber AtaA to a novel microbial immobilization method for the production of indigo as a model chemical. Biotechnol Bioeng 111:16–24

    Article  CAS  PubMed  Google Scholar 

  25. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome … or the cart before the horse. Biotechnol Adv 22:633–658

    Article  CAS  PubMed  Google Scholar 

  26. Kok RG, Christoffels VM, Vosman B, Hellingwerf KJ (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342

    Article  CAS  PubMed  Google Scholar 

  27. Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VAJ (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen TT, Ngo HH, Guo W, Johnston A, Listowski A (2010) Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment. Bioresour Technol 101:1416–1420

    Article  CAS  PubMed  Google Scholar 

  29. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  PubMed  Google Scholar 

  30. Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  PubMed  Google Scholar 

  32. Urbance SE, Pometto AL 3rd, Dispirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe H, Tanji Y, Unno H, Hori K (2008) Rapid conversion of toluene by an Acinetobacter sp. Tol 5 mutant showing monolayer adsorption to water-oil interface. J Biosci Bioeng 106:226–230

    Article  CAS  PubMed  Google Scholar 

  34. Xing XH, Jun BH, Yanagida M, Tanji Y, Unno H (2000) Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles. Biochem Eng J 5:29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Japan Science and Technology Agency through the “Precursory Research for Embryonic Science and Technology Program” and by the Japan Society for the Promotion of Science through the “Funding Program for Next Generation World-Leading Researchers (NEXT Program),” initiated by the Council for Science and Technology Policy in Japan.

Conflict of interest

A patent application has been filed in relation to this work (WO2009/104281).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katsutoshi Hori.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hori, K., Ohara, Y., Ishikawa, M. et al. Effectiveness of direct immobilization of bacterial cells onto material surfaces using the bacterionanofiber protein AtaA. Appl Microbiol Biotechnol 99, 5025–5032 (2015). https://doi.org/10.1007/s00253-015-6554-9

Download citation

Keywords

  • Immobilization
  • Adhesion
  • Bacterionanofiber
  • Trimeric autotransporter adhesin