Skip to main content

Advertisement

Log in

Antibacterial products of marine organisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS, Pan W, Cheung RC (2015) Lectins with anti-HIV activity: a review. Molecules 20(1):648–668. doi:10.3390/molecules20010648

    PubMed  Google Scholar 

  • Amaro HM, Barros R, Guedes AC, Sousa-Pinto I, Malcata FX (2013) Microalgal compounds modulate carcinogenesis in the gastrointestinal tract. Trends Biotechnol 31(2):92–98. doi:10.1016/j.tibtech.2012.11.004

    CAS  PubMed  Google Scholar 

  • Ammerman JW, Fuhrman JA, Hagstrom A, Azam F (1984) Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures. Mar Ecol-Prog Ser 18(1–2):31–39. doi:10.3354/meps018031

    Google Scholar 

  • Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803(1):41–53. doi:10.1016/j.jchromb.2003.11.005S1570023203009255

    CAS  PubMed  Google Scholar 

  • Annamalai N, Kumar A, Saravanakumar A, Vijaylakshmi S, Balasubramanian T (2011) Characterization of protease from Alcaligens faecalis and its antibacterial activity on fish pathogens. J Environ Biol 32(6):781–786

    CAS  PubMed  Google Scholar 

  • Arthur CM, Cummings RD, Stowell SR (2015) Evaluation of the bactericidal activity of galectins. Methods Mol Biol 1207:421–430. doi:10.1007/978-1-4939-1396-1_27

    PubMed  Google Scholar 

  • Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41(2):175–184. doi:10.1007/s10295-013-1389-9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barboza NM, Medina DJ, Budak-Alpdogan T, Aracil M, Jimeno JM, Bertino JR, Banerjee D (2012) Plitidepsin (aplidin) is a potent inhibitor of diffuse large cell and Burkitt lymphoma and is synergistic with rituximab. Cancer Biol Ther 13(2):114–122. doi:10.4161/cbt.13.2.18876

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22. doi:10.1186/1476-0711-12-22

    PubMed Central  PubMed  Google Scholar 

  • Bergmann W, Feeney RJ (1950) The isolation of a new thymine pentoside from sponges. J Am Chem Soc 72(6):2809–2810. doi:10.1021/ja01162a543

    CAS  Google Scholar 

  • Bergmann W, Feeney RJ (1951) Contributions to the study of marine products XXXII. The nucleosides of sponges. I. J Org Chem 16(6):981–987. doi:10.1021/jo01146a023

    CAS  Google Scholar 

  • Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8(10):2673–2701. doi:10.3390/md8102673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatnagar I, Kim SK (2012) Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. Environ Toxicol Pharmacol 34(3):631–643. doi:10.1016/j.etap.2012.08.016

    CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32(2):116–211. doi:10.1039/c4np00144c

    CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Amer IDS (2013) 10 × ’20 Progress-development of new drugs active against Gram-negative Bacilli: an update from the infectious diseases society of America. Clin Infect Dis 56(12):1685–1694. doi:10.1093/Cid/Cit152

    PubMed Central  PubMed  Google Scholar 

  • Bridle A, Nosworthy E, Polinski M, Nowak B (2011) Evidence of an antimicrobial-immunomodulatory role of Atlantic salmon cathelicidins during infection with Yersinia ruckeri. PLoS ONE 6(8):e23417. doi:10.1371/journal.pone.0023417PONE-D-11-10331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broekman DC, Zenz A, Gudmundsdottir BK, Lohner K, Maier VH, Gudmundsson GH (2011) Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides 32(10):2044–2051. doi:10.1016/j.peptides.2011.09.012

    CAS  PubMed  Google Scholar 

  • Broekman DC, Guethmundsson GH, Maier VH (2013) Differential regulation of cathelicidin in salmon and cod. Fish Shellfish Immunol 35(2):532–538. doi:10.1016/j.fsi.2013.05.005

    CAS  PubMed  Google Scholar 

  • Burkholder PR, Ruetzler K (1969) Antimicrobial activity of some marine sponges. Nature 222(5197):983–984

    CAS  PubMed  Google Scholar 

  • Carter GT (2011) Natural products and Pharma 2011: strategic changes spur new opportunities. Nat Prod Rep 28(11):1783–1789. doi:10.1039/c1np00033k

    CAS  PubMed  Google Scholar 

  • Chang CI, Zhang YA, Zou J, Nie P, Secombes CJ (2006) Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar). Antimicrob Agents Chemother 50(1):185–195. doi:10.1128/aac. 50.1.185-195.2006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S (2006) Small cationic protein from a marine turtle has beta-defensin-like fold and antibacterial and antiviral activity. Proteins 64(2):524–531. doi:10.1002/Prot.20963

    CAS  PubMed  Google Scholar 

  • Chen C, Chi H, Sun BG, Sun L (2013) The galectin-3-binding protein of Cynoglossus semilaevis is a secreted protein of the innate immune system that binds a wide range of bacteria and is involved in host phagocytosis. Dev Comp Immunol 39(4):399–408. doi:10.1016/j.dci.2012.10.008

    CAS  PubMed  Google Scholar 

  • Cheung RC, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PH, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit Ael D, Wan DC, Ye XJ, Xia J, Ng TB (2014) Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 98(8):3475–3494. doi:10.1007/s00253-014-5575-0

    CAS  PubMed  Google Scholar 

  • Chin YW, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8(2):E239–E253. doi:10.1208/aapsj080228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi H, Lee DG (2012) Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim Biophys Acta 1820(12):1831–1838. doi:10.1016/j.bbagen.2012.08.012

    CAS  PubMed  Google Scholar 

  • Costa WK, Souza EL, Beltrao-Filho EM, Vasconcelos GK, Santi-Gadelha T, de Almeida Gadelha CA, Franco OL, Magnani M (2014) Comparative protein composition analysis of goat milk produced by the Alpine and Saanen breeds in northeastern Brazil and related antibacterial activities. PLoS ONE 9(3):e93361. doi:10.1371/journal.pone.0093361PONE-D-13-42813

    PubMed Central  PubMed  Google Scholar 

  • Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5(3):399–412. doi:10.4161/viru.27208

    PubMed Central  PubMed  Google Scholar 

  • da Silva Dantas CC, de Souza EL, Cardoso JD, de Lima LA, de Sousa Oliveira K, Migliolo L, Dias SC, Franco OL, Magnani M (2014) Identification of a napin-like peptide from Eugenia malaccensis L. seeds with inhibitory activity toward Staphylococcus aureus and Salmonella Enteritidis. Protein J. doi:10.1007/s10930-014-9587-5

    PubMed  Google Scholar 

  • Dahiya R, Gautam H (2010) Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar Drugs 8(8):2384–2394. doi:10.3390/Md8082384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darabpour E, Ardakani MR, Motamedi H, Ronagh MT, Najafzadeh H (2012) Purification and optimization of production conditions of a marine-derived antibiotic and ultra-structural study on the effect of this antibiotic against MRSA. Eur Rev Med Pharmacol Sci 16(2):157–165

    CAS  PubMed  Google Scholar 

  • Dasari VRRK, Muthyala MKK, Nikku MY, Donthireddy RR (2012) Novel pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiol Res 167(6):346–351. doi:10.1016/j.micres.2011.12.003

    CAS  PubMed  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336. doi:10.3390/metabo2020303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding L, Maier A, Fiebig HH, Lin WH, Peschel G, Hertweck C (2012) Kandenols A-E, eudesmenes from an endophytic Streptomyces sp of the mangrove tree Kandelia candel. J Nat Prod 75(12):2223–2227. doi:10.1021/Np300387n

    CAS  PubMed  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3(6):338–348. doi:10.1016/S1473-3099(03)00655-8

    CAS  PubMed  Google Scholar 

  • Du FY, Li XM, Li CS, Shang Z, Wang BG (2012) Cristatumins A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg Med Chem Lett 22(14):4650–4653. doi:10.1016/j.bmcl.2012.05.088

    CAS  PubMed  Google Scholar 

  • Dusane DH, Matkar P, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr Microbiol 62(3):974–980. doi:10.1007/s00284-010-9812-1

    CAS  PubMed  Google Scholar 

  • El-Sersy NA, Abdelwahab AE, Abouelkhiir SS, Abou-Zeid DM, Sabry SA (2012) Antibacterial and anticancer activity of epsilon-poly-L-lysine (epsilon-PL) produced by a marine Bacillus subtilis sp. J Basic Microbiol 52(5):513–522. doi:10.1002/jobm.201100290

    CAS  PubMed  Google Scholar 

  • Eom SH, Lee DS, Jung YJ, Park JH, Choi JI, Yim MJ, Jeon JM, Kim HW, Son KT, Je JY, Lee MS, Kim YM (2014) The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 98(23):9795–9804. doi:10.1007/s00253-014-6041-8

    CAS  PubMed  Google Scholar 

  • Espinoza-Moraga M, Njuguna NM, Mugumbate G, Caballero J, Chibale K (2013) In silico comparison of antimycobacterial natural products with known antituberculosis drugs. J Chem Inf Model 53(3):649–660. doi:10.1021/ci300467b

    CAS  PubMed  Google Scholar 

  • Fenical W (1993) Chemical studies of marine-bacteria—developing a new resource. Chem Rev 93(5):1673–1683. doi:10.1021/Cr00021a001

    CAS  Google Scholar 

  • Flemer B, Kennedy J, Margassery LM, Morrissey JP, O’Gara F, Dobson ADW (2012) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J Appl Microbiol 112(2):289–301. doi:10.1111/j.1365-2672.2011.05211.x

    CAS  PubMed  Google Scholar 

  • Fu P, Liu P, Qu H, Wang Y, Chen D, Wang H, Li J, Zhu W (2011a) Alpha-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J Nat Prod 74(10):2219–2223. doi:10.1021/np200597m

    CAS  PubMed  Google Scholar 

  • Fu P, Wang SX, Hong K, Li X, Liu PP, Wang Y, Zhu WM (2011b) Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. J Nat Prod 74(8):1751–1756. doi:10.1021/Np200258h

    CAS  PubMed  Google Scholar 

  • Galm U, Shen B (2007) Natural product drug discovery: the times have never been better. Chem Biol 14(10):1098–1104. doi:10.1016/j.chembiol.2007.10.004

    CAS  PubMed  Google Scholar 

  • Gao SS, Li XM, Zhang Y, Li CS, Cui CM, Wang BG (2011) Comazaphilones A-F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD-17. J Nat Prod 74(2):256–261. doi:10.1021/Np100788h

    CAS  PubMed  Google Scholar 

  • Gastineau R, Pouvreau JB, Hellio C, Morancais M, Fleurence J, Gaudin P, Bourgougnon N, Mouget JL (2012) Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J Agric Food Chem 60(14):3599–3605. doi:10.1021/Jf205004x

    CAS  PubMed  Google Scholar 

  • Gupta P, Sharma U, Schulz TC, McLean AB, Robins AJ, West LM (2012) Bicyclic C21 terpenoids from the marine sponge Clathria compressa. J Nat Prod 75(6):1223–1227. doi:10.1021/np300265p

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman-Murillo MA, Ascencio F (2000) Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett Appl Microbiol 30(6):473–478

    CAS  PubMed  Google Scholar 

  • Han Z, Xu Y, McConnell O, Liu LL, Li YX, Qi SH, Huang XZ, Qian PY (2012) Two antimycin A analogues from marine-derived actinomycete Streptomyces lusitanus. Mar Drugs 10(3):668–676. doi:10.3390/Md10030668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haste NM, Thienphrapa W, Tran DN, Loesgen S, Sun P, Nam SJ, Jensen PR, Fenical W, Sakoulas G, Nizet V, Hensler ME (2012) Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. J Antibiot Tokyo 65(12):593–598. doi:10.1038/Ja.2012.77

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawas UW, El-Beih AA, El-Halawany AM (2012) Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch Pharm Res 35(10):1749–1756. doi:10.1007/s12272-012-1006-x

    CAS  PubMed  Google Scholar 

  • Hayes M, Carney B, Slater J, Bruck W (2008) Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications. Biotechnol J 3(7):878–889. doi:10.1002/biot.200800027

    CAS  PubMed  Google Scholar 

  • Herbiniere J, Braquart-Varnier C, Greve P, Strub JM, Frere J, Van Dorsselaer A, Martin G (2005) Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (Terrestrial Isopod, Crustacean). Dev Comp Immunol 29(6):489–499. doi:10.1016/j.dci.2004.11.001

    CAS  PubMed  Google Scholar 

  • Hossain GS, Li J, Shin HD, Du G, Liu L, Chen J (2014) L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 98(4):1507–1515. doi:10.1007/s00253-013-5444-2

    CAS  PubMed  Google Scholar 

  • Huang LS, He F, Huang H, Zhang XY, Qi SH (2012) Carbamate derivatives and sesquiterpenoids from the South China Sea gorgonian Melitodes squamata. Beilstein J Org Chem 8:170–176. doi:10.3762/Bjoc.8.18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34(38):10319–10327. doi:10.1016/j.biomaterials.2013.09.037

    CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin WH, Wray V, Edrada-Ebel R, Proksch P (2010) Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem 18(14):4947–4956. doi:10.1016/j.bmc.2010.06.012

    CAS  PubMed  Google Scholar 

  • Ines T, Amina B, Khaled S, Kamel G (2007) Screening of antimicrobial activity of marine sponge extracts collected from Tunisian coast. Proc West Pharmacol Soc 50:152–155

    CAS  PubMed  Google Scholar 

  • Isnansetyo A, Kamei Y (2009) Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int J Antimicrob Agents 34(2):131–135. doi:10.1016/j.ijantimicag.2009.02.009

    CAS  PubMed  Google Scholar 

  • Jarmila V, Vavrikova E (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Curr Pharm Des 17(32):3596–3607

    PubMed  Google Scholar 

  • Jiao WC, Zhang FH, Zhao XQ, Hu JH, Suh JW (2013) A novel alkaloid from marine-derived actinomycete Streptomyces xinghaiensis with broad-spectrum antibacterial and cytotoxic activities. Plos One 8(10) doi:ARTN e75994DOI 10.1371/journal.pone.0075994

  • Kalinovskaya NI, Kalinovsky AI, Romanenko LA, Dmitrenok PS, Kuznetsova TA (2010) New angucyclines and antimicrobial diketopiperazines from the marine mollusk-derived actinomycete Saccharothrix espanaensis An 113. Nat Prod Commun 5(4):597–602

    CAS  PubMed  Google Scholar 

  • Kanagasabapathy S, Samuthirapandian R, Kumaresan M (2011) Preliminary studies for a new antibiotic from the marine mollusk Melo melo (Lightfoot, 1786). Asian Pac J Trop Med 4(4):310–314. doi:10.1016/S1995-7645(11)60092-8

    CAS  PubMed  Google Scholar 

  • Kang HK, Seo CH, Park Y (2015) Marine peptides and their anti-infective activities. Mar Drugs 13(1):618–654. doi:10.3390/md13010618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasthuri SR, Wan Q, Umasuthan N, Bathige SDNK, Lim BS, Jung HB, Lee J, Whang I (2013) Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol 35(5):1406–1415. doi:10.1016/j.fsi.2013.08.008

    CAS  PubMed  Google Scholar 

  • Kavita K, Singh VK, Jha B (2013) 24-Branched Delta5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 169(4):301–306. doi:10.1016/j.micres.2013.07.002

    PubMed  Google Scholar 

  • Kawanishi T, Shiraishi T, Okano Y, Sugawara K, Hashimoto M, Maejima K, Komatsu K, Kakizawa S, Yamaji Y, Hamamoto H, Oshima K, Namba S (2011) New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints. PLoS ONE 6(1):e16512. doi:10.1371/journal.pone.0016512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khamthong N, Rukachaisirikul V, Tadpetch K, Kaewpet M, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95. Arch Pharm Res 35(3):461–468. doi:10.1007/s12272-012-0309-2

    CAS  PubMed  Google Scholar 

  • Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the Sea. Mar Drugs 2(2):73–82

    PubMed Central  CAS  Google Scholar 

  • Kim H, Elvitigala DAS, Lee Y, Lee S, Whang I, Lee J (2012) Ferritin H-like subunit from Manila clam (Ruditapes philippinarum): molecular insights as a potent player in host antibacterial defense. Fish Shellfish Immunol 33(4):926–936. doi:10.1016/j.fsi.2012.08.007

    CAS  PubMed  Google Scholar 

  • Kitani Y, Toyooka K, Endo M, Ishizaki S, Nagashima Y (2013) Intra-tissue localization of an antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli. Dev Comp Immunol 39(4):456–459. doi:10.1016/j.dci.2012.12.008

    CAS  PubMed  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3):206–220. doi:10.1038/nrd1657

    CAS  PubMed  Google Scholar 

  • Kubota T, Kamijyo Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2013) Zamamiphidin A, a new manzamine related alkaloid from an Okinawan marine sponge Amphimedon sp. Org Lett 15(3):610–612. doi:10.1021/Ol3034274

    CAS  PubMed  Google Scholar 

  • La MP, Li C, Li L, Sun P, Tang H, Liu BS, Gong W, Han H, Yi YH, Zhang W (2012) New bioactive sulfated alkenes from the sea cucumber Apostichopus japonicus. Chem Biodivers 9(6):1166–1171. doi:10.1002/cbdv.201100324

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89(1):45–55. doi:10.1007/s00253-010-2892-9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laport MS, Santos OC, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10(1):86–105

    CAS  PubMed  Google Scholar 

  • Lee SH, Peng KC, Lee LH, Pan CY, Hour AL, Her GM, Hui CF, Chen JY (2013) Characterization of tilapia (Oreochromis niloticus) viperin expression, and inhibition of bacterial growth and modulation of immune-related gene expression by electrotransfer of viperin DNA into zebrafish muscle. Vet Immunol Immunopathol 151(3–4):217–228. doi:10.1016/j.vetimm.2012.11.010

    CAS  PubMed  Google Scholar 

  • Leeds JA, Schmitt EK, Krastel P (2006) Recent developments in antibacterial drug discovery: microbe-derived natural products-from collection to the clinic. Expert Opin Investig Drugs 15(3):211–226. doi:10.1517/13543784.15.3.211

    CAS  PubMed  Google Scholar 

  • Leutou AS, Yun K, Choi HD, Kang JS, Son BW (2012) New production of 5-bromotoluhydroquinone and 4-O-methyltoluhydroquinone from the marine-derived fungus Dothideomycete sp. J Microbiol Biotechnol 22(1):80–83. doi:10.4014/jmb.1108.08069

    CAS  PubMed  Google Scholar 

  • Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23(11):539–543. doi:10.1016/j.tibtech.2005.08.006

    CAS  PubMed  Google Scholar 

  • Li S, Tian X, Niu S, Zhang W, Chen Y, Zhang H, Yang X, Li W, Zhang S, Ju J, Zhang C (2011) Pseudonocardians A-C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar Drugs 9(8):1428–1439. doi:10.3390/md9081428marinedrugs-09-01428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li D, Xu Y, Shao CL, Yang RY, Zheng CJ, Chen YY, Fu XM, Qian PY, She ZG, de Voogd NJ, Wang CY (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10(1):234–241. doi:10.3390/Md10010234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li MF, Chen C, Li J, Sun L (2013) The C-reactive protein of tongue sole Cynoglossus semilaevis is an acute phase protein that interacts with bacterial pathogens and stimulates the antibacterial activity of peripheral blood leukocytes. Fish Shellfish Immunol 34(2):623–631. doi:10.1016/j.fsi.2012.12.001

    PubMed  Google Scholar 

  • Li Y, Lai YM, Lu Y, Yang YL, Chen S (2014) Analysis of the biosynthesis of antibacterial cyclic dipeptides in Nocardiopsis alba. Arch Microbiol 196(11):765–774. doi:10.1007/s00203-014-1015-x

    CAS  PubMed  Google Scholar 

  • Liao Z, Wang XC, Liu HH, Fan MH, Sun JJ, Shen W (2013) Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish Shellfish Immunol 34(2):610–616. doi:10.1016/j.fsi.2012.11.030

    CAS  PubMed  Google Scholar 

  • Lin MC, Hui CF, Chen JY, Wu JL (2013) Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44:139–148. doi:10.1016/j.peptides.2013.04.004

    CAS  PubMed  Google Scholar 

  • Lin Z, Koch M, Pond CD, Mabeza G, Seronay RA, Concepcion GP, Barrows LR, Olivera BM, Schmidt EW (2014) Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J Antibiot Tokyo 67(1):121–126. doi:10.1038/ja.2013.115

    PubMed  Google Scholar 

  • Liu HP, Chen RY, Zhang QX, Wang QY, Li CR, Peng H, Cai L, Zheng CQ, Wang KJ (2012) Characterization of two isoforms of antiliopolysacchride factors (Sp-ALFs) from the mud crab Scylla paramamosain. Fish Shellfish Immunol 33(1):1–10. doi:10.1016/j.fsi.2012.03.014

    PubMed  Google Scholar 

  • Liu Y, Cui Z, Li X, Song C, Shi G, Wang C (2013) Molecular cloning, genomic structure and antimicrobial activity of PtALF7, a unique isoform of anti-lipopolysaccharide factor from the swimming crab Portunus trituberculatus. Fish Shellfish Immunol 34(2):652–659. doi:10.1016/j.fsi.2012.12.002

    CAS  PubMed  Google Scholar 

  • Lopez-Abarrategui C, Alba A, Lima LA, Maria-Neto S, Vasconcelos IM, Oliveira JT, Dias SC, Otero-Gonzalez AJ, Franco OL (2012) Screening of antimicrobials from Caribbean sea animals and isolation of bactericidal proteins from the littoral mollusk Cenchritis muricatus. Curr Microbiol 64(5):501–505. doi:10.1007/s00284-012-0096-5

    CAS  PubMed  Google Scholar 

  • Lu Y, Wang Q, Liu Y, Shao C, Chen S, Sha Z (2014) Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis). Mol Biol Rep 41(6):4093–4101. doi:10.1007/s11033-014-3279-2

    CAS  PubMed  Google Scholar 

  • Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot Tokyo 65(6):317–322. doi:10.1038/ja.2012.19

    CAS  PubMed  Google Scholar 

  • Mahajan G, Thomas B, Parab R, Patel ZE, Kuldharan S, Yemparala V, Mishra PD, Ranadive P, D’Souza L, Pari K, Sivaramkrishnan H (2013) In vitro and in vivo activities of antibiotic PM181104. Antimicrob Agents Chemother 57(11):5315–5319. doi:10.1128/AAC.01059-13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margassery LM, Kennedy J, O’Gara F, Dobson AD, Morrissey JP (2012) Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett Appl Microbiol 55(1):2–8. doi:10.1111/j.1472-765X.2012.03256.x

    CAS  PubMed  Google Scholar 

  • Marinho PR, Simas NK, Kuster RM, Duarte RS, Fracalanzza SE, Ferreira DF, Romanos MT, Muricy G, Giambiagi-Demarval M, Laport MS (2012) Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. J Antimicrob Chemother 67(10):2396–2400. doi:10.1093/jac/dks229

    CAS  PubMed  Google Scholar 

  • Martin LP, Krasner C, Rutledge T, Ibanes ML, Fernandez-Garcia EM, Kahatt C, Gomez MS, McMeekin S (2013) Phase II study of weekly PM00104 ZALYPSIS® in patients with pretreated advanced/metastatic endometrial or cervical cancer. Med Oncol 30(3):627. doi:10.1007/s12032-013-0627-3

    PubMed  Google Scholar 

  • Martins RF, Ramos MF, Herfindal L, Sousa JA, Skaerven K, Vasconcelos VM (2008) Antimicrobial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus. Mar Drugs 6(1):1–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101. doi:10.3390/md12021066

    PubMed Central  PubMed  Google Scholar 

  • McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71(10):1732–1737. doi:10.1021/np800286d

    CAS  PubMed  Google Scholar 

  • Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10(1):131–139. doi:10.3390/md10010131marinedrugs-10-00131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mondol MA, Shahidullah Tareq F, Kim JH, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ (2013) New antimicrobial compounds from a marine-derived Bacillus sp. J Antibiot Tokyo 66(2):89–95. doi:10.1038/ja.2012.102

    PubMed  Google Scholar 

  • Montaser R, Abboud KA, Paul VJ, Luesch H (2011) Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam. J Nat Prod 74(1):109–112. doi:10.1021/np1006839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nathan C (2004) Antibiotics at the crossroads. Nature 431(7011):899–902. doi:10.1038/431899a

    CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. doi:10.1021/np200906s

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ng TB, Cheung RCF, Wong JH, Ye XJ (2013) Antimicrobial activity of defensins and defensin-like peptides with special emphasis on those from fungi and invertebrate animals. Curr Protein Pept Sci 14(6):515–531

    CAS  PubMed  Google Scholar 

  • Ngai PH, Ng TB (2004) A napin-like polypeptide with translation-inhibitory, trypsin-inhibitory, antiproliferative and antibacterial activities from kale seeds. J Pept Res 64(5):202–208. doi:10.1111/j.1399-3011.2004.00186.x

    CAS  PubMed  Google Scholar 

  • Ngai PH, Ng TB (2007) A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum). Appl Microbiol Biotechnol 74(2):433–438. doi:10.1007/s00253-006-0649-2

    CAS  PubMed  Google Scholar 

  • Pan CY, Chen JY, Cheng YS, Chen CY, Ni IH, Sheen JF, Pan YL, Kuo CM (2007) Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 26(6):403–413. doi:10.1089/dna.2006.0564

    CAS  PubMed  Google Scholar 

  • Pan CY, Wu JL, Hui CF, Lin CH, Chen JY (2011) Insights into the antibacterial and immunomodulatory functions of the antimicrobial peptide, epinecidin-1, against Vibrio vulnificus infection in zebrafish. Fish Shellfish Immunol 31(6):1019–1025. doi:10.1016/j.fsi.2011.09.001

    CAS  PubMed  Google Scholar 

  • Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8(3):438–459. doi:10.3390/md8030438

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peng H, Liu HP, Chen B, Hao H, Wang KJ (2012) Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr Purif 82(1):37–44. doi:10.1016/j.pep.2011.11.008

    CAS  PubMed  Google Scholar 

  • Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26(3):338–362. doi:10.1039/b703499g

    CAS  PubMed  Google Scholar 

  • Porto WF, Fensterseifer GM, Franco OL (2014) In silico identification, structural characterization, and phylogenetic analysis of MdesDEF-2: a novel defensin from the Hessian fly, Mayetiola destructor. J Mol Model 20(7):2339. doi:10.1007/s00894-014-2339-9

    PubMed  Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3663. doi:10.1016/j.bmcl.2010.04.100

    CAS  PubMed  Google Scholar 

  • Pruksakorn P, Arai M, Liu L, Moodley P, Jacobs WR Jr, Kobayashi M (2011) Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol Pharm Bull 34(8):1287–1290

    CAS  PubMed  Google Scholar 

  • Qi J, Shao CL, Li ZY, Gan LS, Fu XM, Bian WT, Zhao HY, Wang CY (2013) Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J Nat Prod 76(4):571–579. doi:10.1021/np3007556

    CAS  PubMed  Google Scholar 

  • Qin Z, Huang S, Yu Y, Deng H (2013) Dithiolopyrrolone natural products: isolation, synthesis and biosynthesis. Mar Drugs 11(10):3970–3997. doi:10.3390/md11103970

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qu H, Chen B, Peng H, Wang K (2013) Molecular cloning, recombinant expression, and antimicrobial activity of EC-hepcidin3, a new four-cysteine hepcidin isoform from Epinephelus coioides. Biosci Biotechnol Biochem 77(1):103–110. doi:10.1271/bbb.120600

    CAS  PubMed  Google Scholar 

  • Rice LB (2006) Antimicrobial resistance in gram-positive bacteria. Am J Infect Control 34(5 Suppl 1):S11–S19. doi:10.1016/j.ajic.2006.05.220, discussion S64-73

    PubMed  Google Scholar 

  • Sarika AR, Lipton AP, Aishwarya MS, Dhivya RS (2012) Isolation of a bacteriocin-producing lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures. Appl Biochem Biotechnol 167(5):1280–1289. doi:10.1007/s12010-012-9701-0

    CAS  PubMed  Google Scholar 

  • Schulz D, Ohlendorf B, Zinecker H, Schmaljohann R, Imhoff JF (2011) Eutypoids B-E produced by a Penicillium sp. strain from the North Sea. J Nat Prod 74(1):99–101. doi:10.1021/np100633k

    CAS  PubMed  Google Scholar 

  • Shnit-Orland M, Sivan A, Kushmaro A (2012) Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb Ecol 64(4):851–859. doi:10.1007/s00248-012-0086-y

    CAS  PubMed  Google Scholar 

  • Silber J, Ohlendorf B, Labes A, Erhard A, Imhoff JF (2013) Calcarides A-E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Mar Drugs 11(9):3309–3323. doi:10.3390/md11093309

    PubMed Central  PubMed  Google Scholar 

  • Sivasubramanian K, Ravichandran S, Kumaresan M (2011) Preliminary studies for a new antibiotic from the marine mollusk Melo melo (Lightfoot, 1786). Asian Pac J Trop Med 4(4):310–314. doi:10.1016/S1995-7645(11)60092-8

    Google Scholar 

  • Song Y, Huang H, Chen Y, Ding J, Zhang Y, Sun A, Zhang W, Ju J (2013) Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J Nat Prod 76(12):2263–2268. doi:10.1021/np4006025

    CAS  PubMed  Google Scholar 

  • Souza AL, Diaz-Dellavalle P, Cabrera A, Larranaga P, Dalla-Rizza M, De-Simone SG (2013) Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment. Peptides 45:78–84. doi:10.1016/j.peptides.2013.03.030

    CAS  PubMed  Google Scholar 

  • Subramanian B, Sangappellai T, Rajak RC, Diraviam B (2011) Pharmacological and biomedical properties of sea anemones Paracondactylis indicus, Paracondactylis sinensis, Heteractis magnifica and Stichodactyla haddoni from East coast of India. Asian Pac J Trop Med 4(9):722–726. doi:10.1016/S1995-7645(11)60181-8

    PubMed  Google Scholar 

  • Sunga MJ, Teisan S, Tsueng G, Macherla VR, Lam KS (2008) Seawater requirement for the production of lipoxazolidinones by marine actinomycete strain NPS8920. J Ind Microbiol Biotechnol 35(7):761–765. doi:10.1007/s10295-008-0344-7

    CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ (2014) Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar Drugs 12(2):871–885. doi:10.3390/md12020871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Troskie AM, Rautenbach M, Delattin N, Vosloo JA, Dathe M, Cammue BP, Thevissen K (2014) Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 58(7):3697–3707. doi:10.1128/AAC.02381-14

    PubMed Central  PubMed  Google Scholar 

  • Trujillo JI, Meyers MJ, Anderson DR, Hegde S, Mahoney MW, Vernier WF, Buchler IP, Wu KK, Yang S, Hartmann SJ, Reitz DB (2007) Novel tetrahydro-beta-carboline-1-carboxylic acids as inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 17(16):4657–4663. doi:10.1016/j.bmcl.2007.05.070

    CAS  PubMed  Google Scholar 

  • Tsoukalas N, Tolia M, Lypas G, Panopoulos C, Barbounis V, Koumakis G, Efremidis A (2014) Complete remission of a reccurrent mesenteric liposarcoma with rare histological features following the administration of trabectedin. Oncol Lett 7(1):47–49. doi:10.3892/ol.2013.1646ol-07-01-0047

    PubMed Central  PubMed  Google Scholar 

  • Valliappan K, Sun W, Li Z (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol 98(17):7365–7377. doi:10.1007/s00253-014-5954-6

    CAS  PubMed  Google Scholar 

  • Vo TS, Kim SK, Se-Kwon K (2014) Chapter one—marine-derived polysaccharides for regulation of allergic responses. Adv Food Nutr Res 73 Academic Press 1–13

  • von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D (2006) Antibacterial natural products in medicinal chemistry-exodus or revival? Angew Chem Int Ed Engl 45(31):5072–5129. doi:10.1002/anie.200600350

    Google Scholar 

  • von Schwarzenberg K, Vollmar AM (2013) Targeting apoptosis pathways by natural compounds in cancer: marine compounds as lead structures and chemical tools for cancer therapy. Cancer Lett 332(2):295–303. doi:10.1016/j.canlet.2010.07.004

    Google Scholar 

  • Wagner-Dobler I, Beil W, Lang S, Meiners M, Laatsch H (2002) Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv Biochem Eng Biotechnol 74:207–238

    CAS  PubMed  Google Scholar 

  • Wang R, Liu TM, Shen MH, Yang MQ, Feng QY, Tang XM, Li XM (2012) Spiculisporic acids B-D, three new gamma-butenolide derivatives from a sea urchin-derived fungus Aspergillus sp. HDf2. Molecules 17(11):13175–13182. doi:10.3390/molecules171113175

    CAS  PubMed  Google Scholar 

  • Wang ML, Lu CH, Xu QY, Song SY, Hu ZY, Zheng ZH (2013a) Four new citrinin derivatives from a marine-derived Penicillium sp. fungal strain. Molecules 18(5):5723–5735. doi:10.3390/molecules18055723

    CAS  PubMed  Google Scholar 

  • Wang Z, Fu P, Liu P, Wang P, Hou J, Li W, Zhu W (2013b) New pyran-2-ones from alkalophilic actinomycete, Nocardiopsis alkaliphila sp. Nov. YIM-80379. Chem Biodivers 10(2):281–287. doi:10.1002/cbdv.201200086

    CAS  PubMed  Google Scholar 

  • Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21(6):780–786. doi:10.1016/j.copbio.2010.09.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilmes M, Cammue BP, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350–1358. doi:10.1039/c1np00022e

    CAS  PubMed  Google Scholar 

  • Wong JH, Zhang XQ, Wang HX, Ng TB (2006) A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides 27(9):2075–2081. doi:10.1016/j.peptides.2006.03.020

    CAS  PubMed  Google Scholar 

  • Wong JH, Legowska A, Rolka K, Ng TB, Hui M, Cho CH, Lam WW, Au SW, Gu OW, Wan DC (2011a) Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides 32(6):1117–1122. doi:10.1016/j.peptides.2011.04.017

    CAS  PubMed  Google Scholar 

  • Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH (2011b) Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 32(10):1996–2002. doi:10.1016/j.peptides.2011.08.018

    CAS  PubMed  Google Scholar 

  • Wong JH, Ye XJ, Ng TB (2013) Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr Protein Pept Sci 14(6):504–514

    CAS  PubMed  Google Scholar 

  • Woodford N (2005) Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 11(3):2–21. doi:10.1111/j.1469-0691.2005.01140.x

    CAS  PubMed  Google Scholar 

  • Wu Z, Li S, Li J, Chen Y, Saurav K, Zhang Q, Zhang H, Zhang W, Zhang S, Zhang C (2013) Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs 11(6):2113–2125. doi:10.3390/md11062113

    PubMed Central  PubMed  Google Scholar 

  • Wu B, Liu Z, Zhou L, Ji G, Yang A (2015) Molecular cloning, expression, purification and characterization of vitellogenin in scallop Patinopecten yessoensis with special emphasis on its antibacterial activity. Dev Comp Immunol 49(2):249–258

    CAS  PubMed  Google Scholar 

  • Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS (2012) Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J Nat Prod 75(4):735–740. doi:10.1021/np300016r

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xin W, Ye X, Yu S, Lian XY, Zhang Z (2012) New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar Drugs 10(11):2388–2402. doi:10.3390/md10112388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ (2012) Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J Nat Prod 75(5):1001–1005. doi:10.1021/np300147d

    CAS  PubMed  Google Scholar 

  • Yang L, Fan M, Liu X, Wu M, Shi G, Liao Z (2011) Solution structure and antibacterial mechanism of two synthetic antimicrobial peptides. Sheng Wu Gong Cheng Xue Bao 27(11):1564–1573

    CAS  PubMed  Google Scholar 

  • Yang F, Hamann MT, Zou Y, Zhang MY, Gong XB, Xiao JR, Chen WS, Lin HW (2012) Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. J Nat Prod 75(4):774–778. doi:10.1021/np2009016

    CAS  PubMed  Google Scholar 

  • Yau T, Dan X, Ng CC, Ng TB (2015) Lectins with potential for anti-cancer therapy. Molecules 20(3):3791–3810. doi:10.3390/molecules20033791

    CAS  PubMed  Google Scholar 

  • Ye XJ, Ng TB, Wu ZJ, Xie LH, Fang EF, Wong JH, Pan WL, Wing SS, Zhang YB (2011) Protein from red cabbage (Brassica oleracea) seeds with antifungal, antibacterial, and anticancer activities. J Agric Food Chem 59(18):10232–10238. doi:10.1021/jf201874j

    CAS  PubMed  Google Scholar 

  • Yin C, Wong JH, Ng TB (2014) Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr Mol Med 14(9):1139–1154

    CAS  PubMed  Google Scholar 

  • Yu LP, Sun BG, Li J, Sun L (2013) Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish Shellfish Immunol 34(1):46–54. doi:10.1016/j.fsi.2012.10.007

    PubMed  Google Scholar 

  • Zarai Z, Gharsallah H, Hammami A, Mejdoub H, Bezzine S, Gargouri YT (2012) Antibacterial, anti-chlamydial, and cytotoxic activities of a marine snail (Hexaplex trunculus) phospholipase A2: an in vitro study. Appl Biochem Biotechnol 168(4):877–886. doi:10.1007/s12010-012-9826-1

    CAS  PubMed  Google Scholar 

  • Zhang S, Sun Y, Pang Q, Shi X (2005) Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol 19(1):93–95. doi:10.1016/j.fsi.2004.10.008

    CAS  PubMed  Google Scholar 

  • Zhang S, Wang S, Li H, Li L (2011) Vitellogenin, a multivalent sensor and an antimicrobial effector. Int J Biochem Cell Biol 43(3):303–305. doi:10.1016/j.biocel.2010.11.003

    CAS  PubMed  Google Scholar 

  • Zhang L, Li DL, Chen YC, Tao MH, Zhang WM (2012a) Study on secondary metabolites of marine fungus Penicillium sp. FS60 from the South China Sea. Zhong Yao Cai 35(7):1091–1094

    CAS  PubMed  Google Scholar 

  • Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH (2012b) Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol 64(3):617–627. doi:10.1007/s00248-012-0050-x

    CAS  PubMed  Google Scholar 

  • Zhang J, Yu LP, Li MF, Sun L (2014a) Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol 38(1):127–134. doi:10.1016/j.fsi.2014.03.011

    PubMed  Google Scholar 

  • Zhang M, Li MF, Sun L (2014b) NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. PLoS ONE 9(9):e106543. doi:10.1371/journal.pone.0106543PONE-D-14-18969

    PubMed Central  PubMed  Google Scholar 

  • Zhao HY, Shao CL, Li ZY, Han L, Cao F, Wang CY (2013) Bioactive pregnane steroids from a South China Sea gorgonian Carijoa sp. Molecules 18(3):3458–3466. doi:10.3390/molecules18033458

    CAS  PubMed  Google Scholar 

  • Zheng S, Liu Q, Zhang G, Wang H, Ng TB (2010) Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Acta Biochim Pol 57(1):43–48

    CAS  PubMed  Google Scholar 

  • Zheng J, Wang Y, Wang J, Liu P, Li J, Zhu W (2013) Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17(6):963–971. doi:10.1007/s00792-013-0578-9

    CAS  PubMed  Google Scholar 

  • Zhou X, Huang H, Chen Y, Tan J, Song Y, Zou J, Tian X, Hua Y, Ju J (2012a) Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J Nat Prod 75(12):2251–2255. doi:10.1021/np300554f

    CAS  PubMed  Google Scholar 

  • Zhou Z, Ni D, Wang M, Wang L, Shi X, Yue F, Liu R, Song L (2012b) The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish Shellfish Immunol 33(2):375–381. doi:10.1016/j.fsi.2012.05.022

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the award of an RFCID research grant (no. 10090812) from Food and Health Bureau, The Government of Hong Kong Special Administrative Region, direct grants 4054049 and 4054135 from Medicine Panel, Research Committee, the Chinese University of Hong Kong, and grant from the National Natural Science Foundation of China (nos. 81201270 and 81273275).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzi Bun Ng, Randy Chi Fai Cheung or Jack Ho Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, T.B., Cheung, R.C.F., Wong, J.H. et al. Antibacterial products of marine organisms. Appl Microbiol Biotechnol 99, 4145–4173 (2015). https://doi.org/10.1007/s00253-015-6553-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6553-x

Keywords

Navigation