Skip to main content
Log in

Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Comamonas testosteroni is an important environmental bacterium capable of degrading a variety of toxic aromatic pollutants and has been demonstrated to be a promising biocatalyst for environmental decontamination. This organism is often found to be among the primary surface colonizers in various natural and engineered ecosystems, suggesting an extraordinary capability of this organism in environmental adaptation and biofilm formation. The goal of this study was to gain genetic insights into the adaption of C. testosteroni to versatile environments and the importance of a biofilm lifestyle. Specifically, a draft genome of C. testosteroni I2 was obtained. The draft genome is 5,778,710 bp in length and comprises 110 contigs. The average G+C content was 61.88 %. A total of 5365 genes with 5263 protein-coding genes were predicted, whereas 4324 (80.60 % of total genes) protein-encoding genes were associated with predicted functions. The catabolic genes responsible for biodegradation of steroid and other aromatic compounds on draft genome were identified. Plasmid pI2 was found to encode a complete pathway for aniline degradation and a partial catabolic pathway for chloroaniline. This organism was found to be equipped with a sophisticated signaling system which helps it find ideal niches and switch between planktonic and biofilm lifestyles. A large number of putative multi-drug-resistant genes coding for abundant outer membrane transporters, chaperones, and heat shock proteins for the protection of cellular function were identified in the genome of strain I2. In addition, the genome of strain I2 was predicted to encode several proteins involved in producing, secreting, and uptaking siderophores under iron-limiting conditions. The genome of strain I2 contains a number of genes responsible for the synthesis and secretion of exopolysaccharides, an extracellular component essential for biofilm formation. Overall, our results reveal the genomic features underlying the adaption of C. testosteroni to versatile environments and highlighting the importance of its biofilm lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham JM, Simon GL (2007) Comamonas testosteroni bacteremia: a case report and review of the literature. Infect Dis Clin Pract 15(4):272–273

    Article  Google Scholar 

  • Alikhan NF, Petty NK, Zakour NLB, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12(1):402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G (2008) Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 283(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Bathe S, Schwarzenbeck N, Hausner M (2005) Plasmid‐mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41(3):242–247

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66(7):2906–2913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2001) Genetic diversity among 3-chloroaniline-and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67(3):1107–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 69(3):1511–1520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM (2011) Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 10(7):3190–3199

    Article  CAS  PubMed  Google Scholar 

  • Bossier P, Verstraete W (1996) Comamonas testosteroni colony phenotype influences exopolysaccharide production and coaggregation with yeast cells. Appl Environ Microbiol 62(8):2687–2691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bramucci MG, Nagarajan V (2000) Industrial wastewater bioreactors: sources of novel microorganisms for biotechnology. Trends Biotechnol 18(12):501–505

    Article  CAS  PubMed  Google Scholar 

  • Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A (2007) Siderophore‐mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Loh KC (2008) Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach. Biotechnol Bioeng 101(6):1297–1312

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christiaen SE, Brackman G, Nelis HJ, Coenye T (2011) Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Cotter PA, Stibitz S (2007) C-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Cruz DP, Huertas MG, Lozano M, Zárate L, Zambrano MM (2012) Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae. BMC Microbiol 12(1):139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das S, Jean J-S, Kar S, Chou ML, Chen CY (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Appl Environ Microbiol 80(4):1498–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elo S, Maunuksela L, Salkinoja‐Salonen M, Smolander A, Haahtela K (2000) Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol Ecol 31(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  PubMed  Google Scholar 

  • Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6(8):592–603

    Article  CAS  PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732

    Article  CAS  PubMed  Google Scholar 

  • Göhler A, Xiong G, Paulsen S, Trentmann G, Maser E (2008) Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J Biol Chem 283(25):17380–17390

    Article  PubMed  Google Scholar 

  • Gong W, Kisiela M, Schilhabel MB, Xiong G, Maser E (2012) Genome sequence of Comamonas testosteroni ATCC 11996, a representative strain involved in steroid degradation. J Bacteriol 194(6):1633–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumaelius L, Magnusson G, Pettersson B, Dalhammar G (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51(3):999–1006

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8(3):268–273

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B (2002) Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat Biotechnol 20(11):1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T (2004) Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 324(2):597–604

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, LoCascio P, Land M, Larimer F, Hauser L (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11(1):119

    Article  Google Scholar 

  • Joo H-S, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19(12):1503–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi H, Dave R, Venugopalan VP (2014) Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. Microbiology 160(Pt 7):1393–1400

    Article  CAS  PubMed  Google Scholar 

  • Juang YC, Adav SS, Lee DJ, Lai JY (2010) Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors. Environ Sci Technol 44(4):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Kim L, Pagaling E, Zuo YY, Yan T (2014) Impact of substratum surface on microbial community structure and treatment performance in biological aerated filters. Appl Environ Microbiol 80(1):177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Król J, Penrod J, McCaslin H, Rogers L, Yano H, Stancik A, Dejonghe W, Brown C, Parales R, Wuertz S (2012) Role of IncP-1β plasmids pWDL7: rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. Appl Environ Microbiol 78(3):828–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linares M, Pruneda-Paz JL, Reyna L, Genti-Raimondi S (2008) Regulation of testosterone degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 112(1):145–150

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Xu P, Ren Z (2012) Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresour Technol 120:187–193

    Article  CAS  PubMed  Google Scholar 

  • Möbus E, Jahn M, Schmid R, Jahn D, Maser E (1997) Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179(18):5951–5955

    PubMed Central  PubMed  Google Scholar 

  • Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73(14):4477–4483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu Y, Zheng H, Wang SY, Jiang CY, Zhao GP, Liu SJ (2009) The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 75(21):6812–6819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majdalani N, Gottesman S (2005) The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405

    Article  CAS  PubMed  Google Scholar 

  • Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook A (2004) A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 383:91–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42(D1):D568–D573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25(17):2271–2278

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  • Mikkelsen H, Ball G, Giraud C, Filloux A (2009) Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS ONE 4(6):e6018

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen H, Hui KL, Barraud N, Filloux A (2013) The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14. Mol Microbiol 89(3):450–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohanty A, Liu Y, Yang L, Cao B (2015) Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria. Appl Microbiol Biotechnol 99(4):1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nelson K, Weinel C, Paulsen I, Dodson R, Hilbert H, Martins dos Santos V, Fouts D, Gill S, Pop M, Holmes M (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c‐type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110(7):1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ (2013a) Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90(4):813–823

    Article  CAS  PubMed  Google Scholar 

  • Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ (2013b) Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4, 5-cleavage pathway in bacteria. Appl Microbiol Biotechnol 97(13):6031–6041

    Article  CAS  PubMed  Google Scholar 

  • Nicastro GG, Boechat AL, Abe CM, Kaihami GH, Baldini RL (2009) Pseudomonas aeruginosa PA14 cupD transcription is activated by the RcsB response regulator, but repressed by its putative cognate sensor RcsC. FEMS Microbiol Lett 301(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel K, Patel M, Chauhan K, Anto H, Trivedi U (2007) Production of an antioxidant naphthoquinone pigment by Comamonas testosteroni during growth on naphthalene. J Sci Ind Res 66(8):605

    CAS  Google Scholar 

  • Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18(6):715–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP‐1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31(4):449–477

    Article  PubMed  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Serres MH, Riley M (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188(13):4601–4609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shao Y, He X, Harrison EM, Tai C, Ou HY, Rajakumar K, Deng Z (2010) mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res 38(suppl 2):W194–W200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shokrollahzadeh S, Azizmohseni F, Golmohammad F, Shokouhi H, Khademhaghighat F (2008) Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresour Technol 99(14):6127–6133

    Article  CAS  PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre M (1995) Biphenyl/chlorobiphenyls catabolic pathway of Comamonas testosteroni B-356: prospect for use in bioremediation. Int Biodeter Biodegr 35(1):189–211

    Article  CAS  Google Scholar 

  • Takeo M, Ohara A, Sakae S, Okamoto Y, Kitamura C, D-i K, Negoro S (2013) Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 195(19):4406–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuckerman JR, Gonzalez G, Sousa EH, Wan X, Saito JA, Alam M, Gilles-Gonzalez M-A (2009) An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48(41):9764–9774

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10(2):205–216

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Oger P, Chhabra SR, Camara M, Williams P, Dessaux Y (2007) N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch Microbiol 187(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12(3):R30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto N, Nishi J, Sheikh J, Nataro JP, Sarantuya J, Iwashita M, Manago K, Tokuda K, Yoshinaga M, Kawano Y (2004) Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am J Trop Med Hyg 71(5):687–690

    PubMed  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wang VB, Chua S-L, Cao B, Seviour T, Nesatyy VJ, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H (2013) Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells. PLoS ONE 8(5):e63129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81(1–4):655–663

    Article  CAS  PubMed  Google Scholar 

  • Willems A, De Vos P (2006) Comamonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 723–736

    Chapter  Google Scholar 

  • Wingender J, Neu T, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu T, Flemming H-C (eds) Microbial extracellular polymeric substances. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Wu J, Jiang C, Wang B, Ma Y, Liu Z, Liu S (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72(3):1759–1765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Ding Y, Cohen Y, Cao B (2015) Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl Microbiol Biotechnol 99(4):1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Li D, Li H, He M, Miller SJ, Yu L, Rensing C, Wang G (2011) Genome analysis and characterization of zinc efflux systems of a highly zinc-resistant bacterium, Comamonas testosteroni S44. Res Microbiol 162(7):671–679

    Article  CAS  PubMed  Google Scholar 

  • Yong YC, Zhong JJ (2013) Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway. Bioresour Technol 136:761–765

    Article  CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl 2):W347–W352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Daphne Ng for her helpful suggestions. This research was supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330005.C70), and a Start-up Grant (M4080847.030) from College of Engineering, Nanyang Technological University, Singapore. The authors thank the Singapore Ministry of Education (MOE2011-T2-2-035, ACR 3/12) for the research scholarship to Yichao Wu.

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Arumugam, K., Tay, M.Q.X. et al. Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni . Appl Microbiol Biotechnol 99, 3519–3532 (2015). https://doi.org/10.1007/s00253-015-6519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6519-z

Keywords

Navigation