Skip to main content

Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect

Abstract

Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aloisio I, Santini C, Biavati B, Dinelli G, Cencič A, Chingwaru W, Mogna L, Di Gioia D (2012) Characterization of Bifidobacterium spp. strains for the treatment of enteric disorders in newborns. Appl Microbiol Biotechnol 96:1561–76

    CAS  PubMed  Article  Google Scholar 

  2. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–17

    CAS  PubMed  Article  Google Scholar 

  3. Ammor MS, Flórez AB, Alvarez-Martín P, Margolles A, Mayo B (2008) Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. J Antimicrob Chemother 62:688–93

    CAS  PubMed  Article  Google Scholar 

  4. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–51

    CAS  PubMed  Article  Google Scholar 

  5. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–6

    CAS  PubMed  Article  Google Scholar 

  6. Berman SH, Eichelsdoerfer P, Yim D, Elmer GW, Wenner CA (2006) Daily ingestion of a nutritional probiotic supplement enhances innate immune function in healthy adults. Nutr Res 26:454–459

    CAS  Article  Google Scholar 

  7. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, Goossens H, Desager KN, Vankerckhoven V (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog 5:10–15

    PubMed Central  PubMed  Article  Google Scholar 

  8. Capozzi V, Russo P, Dueñas MT, López P, Spano G (2012) Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 96:1383–94

    CAS  PubMed  Article  Google Scholar 

  9. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–68

    CAS  PubMed  Article  Google Scholar 

  10. Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78

    CAS  PubMed  Article  Google Scholar 

  11. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic Lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol. doi:10.1128/AEM.71.6.3060

    PubMed Central  PubMed  Google Scholar 

  12. Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EM, O’Sullivan GC, Shanahan F, Collins JK (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76:279–92

    CAS  PubMed  Article  Google Scholar 

  13. Fernandez Freire P, Peropadre A, Perez Martin JM, Herrero O, Hazen MJ (2009) An integrated cellular model to evaluate citotoxic effects in mammalian cell lines. Toxicol in Vitro 23:1553–1558

    CAS  PubMed  Article  Google Scholar 

  14. Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B (2007) Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13:236–43

    PubMed Central  PubMed  Article  Google Scholar 

  15. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A (2013) Sources, isolation, characterization and evaluation of probiotics. Br J Nutr 109:35–50

    Article  Google Scholar 

  16. Food and Agriculture Organization/World Health Organization (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.

  17. Food European and Safety Authority (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance 2. 10:1–10

  18. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88:S39–49

    CAS  PubMed  Article  Google Scholar 

  19. Gueimonde M, Flórez AB, van Hoek AHAM, Stuer-Lauridsen B, Strøman P, de los Reyes-Gavilán CG, Margolles A (2010) Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 76:3364–9

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Jacobsen CN, Nielsen VR, Hayford AE, Michaelsen KF, Pærregaard A, Sandström B, Jakobsen M, Møller PL (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–56

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78:80–8

    CAS  PubMed  Article  Google Scholar 

  22. Kimoto H, Kurisaki J, Tsuji NM, Ohmomo S, Okamoto T (1999) Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 29:313–6

    CAS  PubMed  Article  Google Scholar 

  23. Kinsner-Ovaskainen A, Bulgheroni A, Hartung T, Prieto P (2009) ECVAM's ongoing activities in the area of acute oral toxicity. Toxicol in Vitro 23:1535–1540

    CAS  PubMed  Article  Google Scholar 

  24. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    CAS  PubMed  Article  Google Scholar 

  25. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E and Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, 115–175

  26. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria current knowledge and potential applications. J Appl Microbiol 111:1297–309

    CAS  PubMed  Article  Google Scholar 

  27. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–66

    CAS  PubMed  Article  Google Scholar 

  28. Mantere-Alhonen S (1995) Propionibacteria used as probiotics - a review. Lait 75:447–52

    CAS  Article  Google Scholar 

  29. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–99

    CAS  Article  Google Scholar 

  30. Medina M, Izquierdo E, Ennahar S, Sanz Y (2007) Differential immunomodulatory properties of Bifidobacterium longum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 150:531–38

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, Savelkoul HF, van Bilsen J, Kleerebezem M, Wells JM (2010) Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 5:e10632

    PubMed Central  PubMed  Article  Google Scholar 

  32. Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55:38–44

    CAS  PubMed  Article  Google Scholar 

  33. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen F-A, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–601

    PubMed Central  PubMed  Article  Google Scholar 

  34. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M (2007) Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179–85

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Prasad J, Gill H, Smart J, Gopal PK (2000) Selection and Characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002

    Article  Google Scholar 

  36. Priya AJ, Vijayalakshmi SP, Raichur AM (2011) Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J Agric Food Chem 59:11838–845

    CAS  PubMed  Article  Google Scholar 

  37. Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36:22–9

    CAS  PubMed  Article  Google Scholar 

  38. Robles Alonso V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109(Suppl 2):S21–6

    CAS  PubMed  Article  Google Scholar 

  39. Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–34

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    CAS  PubMed  Article  Google Scholar 

  41. Sanders ME, Huis in’t Veld J (1999) Bringing a probiotic-containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie Van Leeuwenhoek 76:293–315

    CAS  PubMed  Article  Google Scholar 

  42. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, Biavati B (2010) Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 141:98–108

    Article  Google Scholar 

  43. Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008) High-Level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–4

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–40

    CAS  PubMed  Article  Google Scholar 

  45. Spyropoulos BG, Misiakos EP, Fotiadis C, Stoidis CN (2011) Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig Dis Sci 56:285–94

    PubMed  Article  Google Scholar 

  46. Strus M, Kucharska A, Kukla G, Brzychczy-Włoch M, Maresz K, Heczko PB (2005) The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol 13:69–75

    PubMed Central  PubMed  Article  Google Scholar 

  47. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J (2003) Effects of cultivation conditions on folate production by Lactic Acid Bacteria. Metab Eng 69:4542–548

    CAS  Google Scholar 

  48. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. 70:1176–181.

Download references

Acknowledgments

The research was conducted through the Probioplus4Food Project, funded by MIUR and Lombardy Region, Italy. We thank Principium Europe Srl for supplying the bacterial strains.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Di Gennaro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Presti, I., D’Orazio, G., Labra, M. et al. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Appl Microbiol Biotechnol 99, 5613–5626 (2015). https://doi.org/10.1007/s00253-015-6482-8

Download citation

Keywords

  • Probiotics
  • Lactobacillus
  • Bifidobacterium
  • Intestinal microbiota
  • Gut disorders