Skip to main content
Log in

A chip-based assay for botulinum neurotoxin A activity in pharmaceutical preparations

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of botulinum neurotoxin A (BoNT/A) for therapeutic and cosmetic applications requires precise determination of batch potency, and the enzymatic activity of BoNT/A light chain is a crucial index that can be measured in vitro. We previously established a SNAP-25 chip-based assay using surface plasmon resonance (SPR) that is more sensitive than the standard mouse bioassay for the quantification of BoNT/A activity. We have now adapted this procedure for pharmaceutical preparations. The optimized SPR assay allowed multiple measurements on a single chip, including the kinetics of substrate cleavage. The activity of five different batches of a pharmaceutical BoNT/A preparation was determined in a blind study by SPR and found to be in agreement with data from the in vivo mouse lethality assay. Biosensor detection of specific proteolytic products has the potential to accurately monitor the activity of pharmaceutical BoNT/A preparations, and a single chip can be used to assay more than 100 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler S, Bicker G, Bigalke H, Bishop C, Blumel J, Dressler D, Fitzgerald J, Gessler F, Heuschen H, Kegel B, Luch A, Milne C, Pickett A, Ratsch H, Ruhdel I, Sesardic D, Stephens M, Stiens G, Thornton PD, Thurmer R, Vey M, Spielmann H, Grune B, Liebsch M (2010) The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing. The report and recommendations of a ZEBET Expert Meeting. Altern Lab Anim 38(4):315–330

    CAS  PubMed  Google Scholar 

  • Capek P, Dickerson TJ (2010) Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins 2(1):24–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S (2012) Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins 4(10):913–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhaked RK, Singh MK, Singh P, Gupta P (2010) Botulinum toxin: bioweapon & magic drug. Indian J Med Res 132:489–503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dressler D (2012) Clinical applications of botulinum toxin. Curr Opin Microbiol 15(3):325–336

    Article  PubMed  Google Scholar 

  • Dressler D (2013) Botulinum toxin therapy: its use for neurological disorders of the autonomic nervous system. J Neurol 260(3):701–713

    Article  CAS  PubMed  Google Scholar 

  • Ekong TA, Feavers IM, Sesardic D (1997) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology (Reading, England) 143(Pt 10):3337–3347

    Article  CAS  Google Scholar 

  • Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD (2012) Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective. Clin Biochem Rev 33(4):161–173

    PubMed Central  PubMed  Google Scholar 

  • Hunt T, Rupp D, Shimizu G, Tam K, Weidler J, Xie J (2010) Characterization of SNARE cleavage products generated by formulated botulinum neurotoxin type-a drug products. Toxins 2(8):2198–2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohler JM, Henkel T (2005) Chip devices for miniaturized biotechnology. Appl Microbiol Biotechnol 69(2):113–125

    Article  PubMed  Google Scholar 

  • Lévêque C, Ferracci G, Maulet Y, Grand-Masson C, Blanchard MP, Seagar M, El Far O (2013) A substrate sensor chip to assay the enzymatic activity of Botulinum neurotoxin A. Biosens Bioelectron 49:276–281

    Article  PubMed  Google Scholar 

  • Lévêque C, Ferracci G, Maulet Y, Mazuet C, Popoff M, Seagar M, El Far O (2014) Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron 57:207–212

    Article  PubMed  Google Scholar 

  • Pickett A, Perrow K (2010) Formulation composition of botulinum toxins in clinical use. J Drugs Dermatol 9(9):1085–1091

    PubMed  Google Scholar 

  • Popoff MR (2014) Botulinum neurotoxins: more and more diverse and fascinating toxic proteins. J Infect Dis 209(2):168–169

    Article  PubMed  Google Scholar 

  • Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549

    Article  CAS  PubMed  Google Scholar 

  • Straughan D (2006) Progress in applying the Three Rs to the potency testing of Botulinum toxin type A. Altern Lab Anim 34(3):305–313

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the INSERM and CNRS. The authors would like to thank IPSEN Biopharm for supplying Dysport samples. We thank Dr. Raymond Miquelis for valuable discussions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama El Far.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévêque, C., Ferracci, G., Maulet, Y. et al. A chip-based assay for botulinum neurotoxin A activity in pharmaceutical preparations. Appl Microbiol Biotechnol 99, 4355–4360 (2015). https://doi.org/10.1007/s00253-015-6438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6438-z

Keywords

Navigation