Skip to main content
Log in

Comprehensive characterization of sphingolipid ceramide N-deacylase for the synthesis and fatty acid remodeling of glycosphingolipids

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sphingolipid ceramide N-deacylase (SCDase) catalyzes reversible reactions in which the amide linkage in glycosphingolipids is hydrolyzed or synthesized. While SCDases show great value for the enzymatic synthesis of glycosphingolipids, they are relatively poorly characterized enzymes. In this work, the enzymatic properties of SCDase from Shewanella alga G8 (SA_SCD) were systematically characterized and compared with the commercially available SCDase from Pseudomonas sp. TK4 (PS_SCD). The optimal pH values for the hydrolytic and synthetic activity of SA_SCD were pH 6.0 and pH 7.5, respectively. Both activities were strongly inhibited by Zn2+ and Cu2+, while Fe2+, Co2+, Ni2+, Mn2+, Ca2+, and Mg2+ promoted the hydrolytic activity but inhibited the synthetic activity. SA_SCD showed very broad substrate specificity both in hydrolysis and synthesis. Importantly, SA_SCD has a broader specificity for acyl donor acceptance than does PS_SCD, especially for unsaturated fatty acids and fatty acids with very short or long acyl chains. Further kinetic analysis revealed that the k cat/K M value for the hydrolytic activity of SA_SCD was 8.9-fold higher than that of PS_SCD for GM1a, while the values for the synthetic activity were 38-fold higher for stearic acid and 23-fold higher for lyso-GM1a (d18:1) than those of PS_SCD, respectively. The broad fatty acid specificity and high catalytic efficiency, together with the ease of expression of SA_SCD in Escherichia coli, make it a better biocatalyst than is PS_SCD for the synthesis and structural remodeling of glycosphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashida H, Hayashi S, Sakamoto Y, Tsuji Y, Yamamoto K, Kumagai H, Tochikura T (1995) Formation of Lyso-glycosphingolipids by Streptomyces sp. Biosci Biotechnol Biochem 59:2028–2032

    Article  CAS  PubMed  Google Scholar 

  • Bachis A, Rabin S, Del Fiacco M, Mocchetti I (2002) Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 4:225–234

    Article  CAS  PubMed  Google Scholar 

  • Butters TD, Dwek RA, Platt FM (2000) Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chem Rev 100:4683–4696

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Deems RA, Dennis EA (1995) Lipid signaling enzymes and surface dilution kinetics. J Biol Chem 270:18711–18714

    Article  CAS  PubMed  Google Scholar 

  • Chinnapen DJF, Hsieh W-T, te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D’Auria L, Park H, Wagner JS, Drake KR, Kang M, Benjamin T, Ullman MD, Costello CE, Kenworthy AK, Baumgart T, Massol RH, Lencer WI (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23:573–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deems RA, Eaton BR, Dennis EA (1975) Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes. J Biol Chem 250:9013–9020

    CAS  PubMed  Google Scholar 

  • Dennis EA (1973) Kinetic dependence of phospholipase A2 activity on the detergent Triton X-100. J Lipid Res 14:152–159

    CAS  PubMed  Google Scholar 

  • Eaton BR, Dennis EA (1976) Analysis of phospholipase C (Bacillus cereus) action toward mixed micelles of phospholipid and surfactant. Arch Biochem Biophys 176:604–609

    Article  CAS  PubMed  Google Scholar 

  • Furusato M, Sueyoshi N, Mitsutake S, Sakaguchi K, Kita K, Okino N, Ichinose S, Omori A, Ito M (2002) Molecular cloning and characterization of sphingolipid ceramide N-deacylase from a marine bacterium, Shewanella alga G8. J Biol Chem 277:17300–17307

    Article  CAS  PubMed  Google Scholar 

  • Gazzotti G, Sonnino S, Ghidoni R, Kirschner G, Tettamanti G (1984) Analytical and preparative high-performance liquid chromatography of gangliosides. J Neurosci Res 12:179–192

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury—a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324:1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Ortiz M, Gomis-Rüth FX, Huber R, Avilés FX (1997) Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. FEBS Lett 400:336–340

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S (1998) Cancer-associated glycosphingolipid antigens: their structure, organization, and function. Cells Tissues Organs 161:79–90

    Article  CAS  Google Scholar 

  • Hirabayashi Y, Kimura M, Matsumoto M, Yamamoto K, Kadowaki S, Tochikura T (1988) A novel glycosphingolipid hydrolyzing enzyme, glycosphingolipid ceramide deacylase, which cleaves the linkage between the fatty acid and sphingosine base in glycosphingolipids. J Biochem 103:1–4

    CAS  PubMed  Google Scholar 

  • Holland DR, Hausrath AC, Juers D, Matthews BW (1995) Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci 4:1955–1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito M, Kurita T, Kita K (1995) A novel enzyme that cleaves the N-acyl linkage of ceramides in various glycosphingolipids as well as sphingomyelin to produce their lyso forms. J Biol Chem 270:24370–24374

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Kurita T, Kita K, Sueyoshi N, Mitsutake S, Fujita M, Okino N, Izu H, Kato I (2004) Sphingolipid ceramide N-deacylase, methods for producing sphingolipids and sphingolipid derivatives, and sphingolipid ceramide N-deacylase gene. US Patent 6821761:B2

    Google Scholar 

  • Kaneko M, Yamada K, Miyamoto T, Inagaki M, Higuchi R (2007) Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship. Chem Pharm Bull 55:462–463

    Article  CAS  PubMed  Google Scholar 

  • Kharlamov A, Zivkovic I, Polo A, Armstrong D, Costa E, Guidotti A (1994) LIGA20, a lyso derivative of ganglioside GM1, given orally after cortical thrombosis reduces infarct size and associated cognition deficit. Proc Natl Acad Sci U S A 91:6303–6307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kita K, Kurita T, Ito M (2001) Characterization of the reversible nature of the reaction catalyzed by sphingolipid ceramide N-deacylase—a novel form of reverse hydrolysis reaction. Eur J Biochem 268:592–602

    Article  CAS  PubMed  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  PubMed  Google Scholar 

  • Kuchař L, Rotková J, Asfaw B, Lenfeld J, Horák D, Korecká L, Bílková Z, Ledvinová J (2010) Semisynthesis of C17:0 isoforms of sulphatide and glucosylceramide using immobilised sphingolipid ceramide N-deacylase for application in analytical mass spectrometry. Rapid Commun Mass Spectrom 24:2393–2399

    Article  PubMed  Google Scholar 

  • Kurita T, Izu H, Sano M, Ito M, Kato I (2000) Enhancement of hydrolytic activity of sphingolipid ceramide N-deacylase in the aqueous-organic biphasic system. J Lipid Res 41:846–851

    CAS  PubMed  Google Scholar 

  • Larsen KS, Auld DS (1989) Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry 28:9620–9625

    Article  CAS  PubMed  Google Scholar 

  • Larsen KS, Auld DS (1991) Characterization of an inhibitory metal binding site in carboxypeptidase A. Biochemistry 30:2613–2618

    Article  CAS  PubMed  Google Scholar 

  • Lipartiti M, Lazzaro A, Manev H (1992) Ganglioside derivative LIGA20 reduces NMDA neurotoxicity in neonatal rat brain. NeuroReport 3:919–921

    Article  CAS  PubMed  Google Scholar 

  • Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990) Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252:419–427

    CAS  PubMed  Google Scholar 

  • Mitsutake S, Kita K, Okino N, Ito M (1997) [14C]Ceramide synthesis by sphingolipid ceramide N-Deacylase: new assay for ceramidase activity detection. Anal Biochem 247:52–57

    Article  CAS  PubMed  Google Scholar 

  • Mitsutake S, Kita K, Nakagawa T, Ito M (1998) Enzymatic synthesis of 14C-glycosphingolipids by reverse hydrolysis reaction of sphingolipid ceramide N-deacylase: detection of endoglycoceramidase activity in a seaflower. J Biochem 123:859–863

    Article  CAS  PubMed  Google Scholar 

  • Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Tani M, Kita K, Ito M (1999) Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-Deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection of sphingolipid-binding proteins. J Biochem 126:604–611

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Morotomi A, Tani M, Sueyoshi N, Komori H, Ito M (2005) C18:3-GM1a induces apoptosis in Neuro2a cells: enzymatic remodeling of fatty acyl chains of glycosphingolipids. J Lipid Res 46:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson J, Magnusson G (2000) Analogues of glycosphingolipids and glycerolipids suitable for conjugation to gold- and amino-functionalised surfaces. Tetrahedron 56:9975–9984

    Article  CAS  Google Scholar 

  • Rich JR, Withers SG (2012) A chemoenzymatic total synthesis of the neurogenic starfish ganglioside LLG-3 using an engineered and evolved synthase. Angew Chem Int Ed Engl 51:8640–8643

    Article  CAS  PubMed  Google Scholar 

  • Rich JR, Cunningham A-M, Gilbert M, Withers SG (2011) Glycosphingolipid synthesis employing a combination of recombinant glycosyltransferases and an endoglycoceramidase glycosynthase. Chem Commun 47:10806–10808

    Article  CAS  Google Scholar 

  • Roberts MF, Deems RA, Dennis EA (1977) Dual role of interfacial phospholipid in phospholipase A2 catalysis. Proc Natl Acad Sci U S A 74:1950–1954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rupčić J, Marić V (2004) Cerebrosides of Candida lipolytica yeast. Appl Microbiol Biotechnol 64:416–420

    Article  PubMed  Google Scholar 

  • Schorsch C, Boles E, Schaffer S (2013) Biotechnological production of sphingoid bases and their applications. Appl Microbiol Biotechnol 97:4301–4308

    Article  CAS  PubMed  Google Scholar 

  • Sundler R, Alberts AW, Vagelos PR (1978) Enzymatic properties of phosphatidylinositol inositolphosphohydrolase from Bacillus cereus. Substrate dilution in detergent-phospholipid micelles and bilayer vesicles. J Biol Chem 253:4175–4179

    CAS  PubMed  Google Scholar 

  • Vankar YD, Schmidt RR (2000) Chemistry of glycosphingolipids—carbohydrate molecules of biological significance. Chem Soc Rev 29:201–216

    Article  CAS  Google Scholar 

  • Wakayama M, Miura Y, Oshima K, Sakai K, Moriguchi M (1995) Metal-characterization of N-Acyl-D-glutamate Amidohydrolase from Pseudomonas sp. Strain 5f-l. Biosci Biotechnol Biochem 59:1489–1492

    Article  CAS  PubMed  Google Scholar 

  • Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG (2009) Glycosphingolipids-nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 48:8848–8869

    Article  CAS  PubMed  Google Scholar 

  • Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125:2591–2625

    Article  PubMed  Google Scholar 

  • Xu X, Goda HM, Inagaki M, Okino N, Ito M (2009) Enzymatic remodeling of fatty acid molecules by SCDase demonstrated that Fucosyl GM1a possessing a polyunsaturated fatty acid induces apoptosis in HL60 human promyelocytic leukemia cells. J Fac Kyushu Univ 54:433–437

    CAS  Google Scholar 

  • Yedgar S, Gatt S (1976) Effect of Triton X-100 on the hydrolysis of sphingomyelin by sphingomyelinase of rat brain. Biochemistry 15:2570–2573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program), the Natural Science Foundation of China (grant number 31070056 and 31470788), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canadian Institutes for Health Research (CIHR). The authors would thank Wei Zhang and Xinde Zhu in the Instrument and Service Center of School of Life Sciences and Biotechnology, Shanghai Jiao Tong University for technical assistance.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Feng or Guang-Yu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YB., Wu, L., Rich, J.R. et al. Comprehensive characterization of sphingolipid ceramide N-deacylase for the synthesis and fatty acid remodeling of glycosphingolipids. Appl Microbiol Biotechnol 99, 6715–6726 (2015). https://doi.org/10.1007/s00253-015-6421-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6421-8

Keywords

Navigation