Applied Microbiology and Biotechnology

, Volume 99, Issue 13, pp 5697–5707 | Cite as

Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China

  • Wei-Ying Ouyang
  • Fu-Yi Huang
  • Yi Zhao
  • Hu Li
  • Jian-Qiang SuEmail author
Environmental biotechnology


The rapid global urbanization and other extensive anthropogenic activities exacerbated the worldwide human health risks induced by antibiotic resistance genes (ARGs). Knowledge of the origins and dissemination of ARGs is essential for understanding modern resistome, while little information is known regarding the overall resistance levels in urban river. In this study, the abundance of multi-resistant bacteria (MRB) and ARGs was investigated using culture-based method and high-throughput qPCR in water samples collected from urban stream and source of Jiulongjiang River, China, respectively. The abundance of MRB (conferring resistance to three combinations of antibiotics and vancomycin) was significantly higher in urban samples. A total of 212 ARGs were detected among all the water samples, which encoded resistance to almost all major classes of antibiotics and encompassed major resistant mechanisms. The total abundance of ARGs in urban samples (ranging from 9.72 × 1010 to 1.03 × 1011 copies L−1) was over two orders of magnitude higher than that in pristine samples (7.18 × 108 copies L−1), accompanied with distinct ARGs structures, significantly higher diversity, and enrichment of ARGs. Significant correlations between the abundance of ARGs and mobile genetic elements (MGEs) were observed, implicating the potential of horizontal transfer of ARGs. High abundance and enrichment of diverse ARGs and MGEs detected in urban river provide evidence that anthropogenic activities are responsible for the emergence and dissemination of ARGs to the urban river and management options should be taken into account for minimizing the spread of ARGs.


Antibiotic resistance Urbanization Urban stream High-throughput qPCR Multi-resistant bacteria 



This work was supported by the National Natural Science Foundation of China (21210008) and International Science & Technology Cooperation Program of China (No. 2011DFB91710).

Supplementary material

253_2015_6416_MOESM1_ESM.pdf (78 kb)
ESM 1 (PDF 77 kb)
253_2015_6416_MOESM2_ESM.xlsx (990 kb)
ESM 2 (XLSX 990 kb)


  1. Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne bla(NDM-1) resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020. doi: 10.1021/es405348h PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amos GCA, Zhang L, Hawkey PM, Gaze WH, Wellington EM (2014) Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Vet Microbiol 171(3–4):441–447. doi: 10.1016/j.vetmic.2014.02.017 PubMedCrossRefGoogle Scholar
  3. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182. doi: 10.1016/j.tim.2006.02.006 PubMedCrossRefGoogle Scholar
  4. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265. doi: 10.1016/j.copbio.2008.05.006 PubMedCrossRefGoogle Scholar
  5. Bockelmann U, Dorries HH, Ayuso-Gabella MN, de Marcay MS, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintgens T, Grohmann E (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75(1):154–163. doi: 10.1128/aem. 01649-08 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brooks JP, Adeli A, McLaughlin MR (2014) Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res 57:96–103. doi: 10.1016/j.watres.2014.03.017 PubMedCrossRefGoogle Scholar
  7. Chagas TPG, Seki LM, Cury JC, Oliveira JAL, Davila AMR, Silva DM, Asensi MD (2011) Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol 111(3):572–581. doi: 10.1111/j.1365-2672.2011.05072.x PubMedCrossRefGoogle Scholar
  8. Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38(3):1086–1108. doi: 10.2134/jeq2008.0128 PubMedCrossRefGoogle Scholar
  9. Chen BW, Liang XM, Huang XP, Zhang T, Li XD (2013a) Differentiating anthropogenic impacts on ARGs in the pearl river estuary by using suitable gene indicators. Water Res 47(8):2811–2820. doi: 10.1016/j.watres.2013.02.042 PubMedCrossRefGoogle Scholar
  10. Chen BW, Yang Y, Liang XM, Yu K, Zhang T, Li XD (2013b) Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol 47(22):12753–12760. doi: 10.1021/es403818e PubMedCrossRefGoogle Scholar
  11. Chouchani C, Marrakchi R, Henriques I, Correia A (2013) Occurrence of IMP-8, IMP-10, and IMP-13 metallo-beta-lactamases located on class 1 integrons and other extended-spectrum beta-lactamases in bacterial isolates from Tunisian rivers. Scand J Infect Dis 45(2):95–103. doi: 10.3109/00365548.2012.717712 PubMedCrossRefGoogle Scholar
  12. Czekalski N, Berthold T, Caucci S, Egli A, Burgmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Mirobiol 3. doi: 10.3389/fmicb.2012.00106 Google Scholar
  13. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417. doi: 10.1128/Mmbr.00016-10 PubMedCentralPubMedCrossRefGoogle Scholar
  14. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. doi: 10.1038/nature10388 PubMedCrossRefGoogle Scholar
  15. Dhara L, Tripathi A (2014) Genetic and structural insights into plasmid-mediated extended-spectrum beta-lactamase activity of CTX-M and SHV variants among pathogenic Enterobacteriaceae infecting Indian patients. Int J Antimicrob Agents 43(6):518–526. doi: 10.1016/j.ijantimicag.2014.03.002 PubMedCrossRefGoogle Scholar
  16. Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM (2008) A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. Fems Microbiol Lett 278(2):193–199. doi: 10.1111/j.1574-6968.2007.00991.x PubMedCrossRefGoogle Scholar
  17. Forslund K, Sunagawa S, Coelho LP, Bork P (2014) Metagenomic insights into the human gut resistome and the forces that shape it. Bioessays 36(3):316–329. doi: 10.1002/bies.201300143 PubMedCrossRefGoogle Scholar
  18. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, Stokes HW (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190(14):5095–5100. doi: 10.1128/JB.00152-08 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. Plos Pathog 7(7) doi: 10.1371/journal.ppat.1002158
  20. Guo XP, Li J, Yang F, Yang J, Yin DQ (2014) Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Sci Total Environ 493:626–631. doi: 10.1016/j.scitotenv.2014.06.035 PubMedCrossRefGoogle Scholar
  21. Hammerum AM, Heuer OE (2009) Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 48(7):916–921. doi: 10.1086/597292 PubMedCrossRefGoogle Scholar
  22. Hsu JT, Chen CY, Young CW, Chao WL, Li MH, Liu YH, Lin CM, Ying CW (2014) Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. J Hazard Mater 277:34–43. doi: 10.1016/j.jhazmat.2014.02.016 PubMedCrossRefGoogle Scholar
  23. Jia SY, He XW, Bu YQ, Shi P, Miao Y, Zhou HP, Shan ZJ, Zhang XX (2014) Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. J Environ Sci Health B 49(8):624–631. doi: 10.1080/03601234.2014.911594 PubMedCrossRefGoogle Scholar
  24. Jiang HY, Zhang DD, Xiao SC, Geng CN, Zhang X (2013a) Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environ Sci Pollut Res 20(12):9075–9083. doi: 10.1007/s11356-013-1924-2 CrossRefGoogle Scholar
  25. Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013b) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458:267–272. doi: 10.1016/j.scitotenv.2013.04.038 PubMedCrossRefGoogle Scholar
  26. Jiang L, Hu XL, Xu T, Zhang HC, Sheng D, Yin DQ (2013c) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458:267–272. doi: 10.1016/j.scitotenv.2013.04.038 PubMedCrossRefGoogle Scholar
  27. Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxic Environ Health B 10(8):559–573. doi: 10.1080/15287390600975137 CrossRefGoogle Scholar
  28. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29(1):181–184. doi: 10.1093/Nar/29.1.181 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kumar A, Mukherjee S, Chakraborty R (2010) Characterization of a novel trimethoprim resistance gene, dfrA28, in class 1 integron of an oligotrophic Acinetobacter johnsonii strain, MB52, isolated from river Mahananda, India. Microb Drug Resist 16(1):29–37. doi: 10.1089/mdr.2009.0111 PubMedCrossRefGoogle Scholar
  30. Kummerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. doi: 10.1016/j.chemosphere.2008.11.086 PubMedCrossRefGoogle Scholar
  31. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior harbor. Environ Sci Technol 45(22):9543–9549. doi: 10.1021/es202775r PubMedCrossRefGoogle Scholar
  32. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai BL, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109(5):1691–1696. doi: 10.1073/pnas.1120238109 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lv L, Jiang T, Zhang SH, Yu X (2014) Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environ Sci Technol 48(14):8188–8195. doi: 10.1021/es501646n PubMedCrossRefGoogle Scholar
  34. Ma LP, Li B, Zhang T (2014) Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl Microbiol Biotechnol 98(11):5195–5204. doi: 10.1007/s00253-014-5511-3 PubMedCrossRefGoogle Scholar
  35. Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22(1):36–41. doi: 10.1016/j.tim.2013.11.001 PubMedCrossRefGoogle Scholar
  36. Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321(5887):365–367. doi: 10.1126/science.1159483 PubMedCrossRefGoogle Scholar
  37. Monier JM, Demaneche S, Delmont TO, Mathieu A, Vogel TM, Simonet P (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14(3):229–235. doi: 10.1016/j.mib.2011.04.010 PubMedCrossRefGoogle Scholar
  38. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis 56(1) doi: 10.1093/cid/cis803
  39. Piotrowska M, Popowska M (2014) The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann Microbiol 64(3):921–934. doi: 10.1007/s13213-014-0911-2 CrossRefGoogle Scholar
  40. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3(6):1101–1108. doi: 10.1038/nprot.2008.73 PubMedCrossRefGoogle Scholar
  41. Singh R, Schroeder CM, Meng JH, White DG, McDermott PF, Wagner DD, Yang HC, Simjee S, DebRoy C, Walker RD, Zhao SH (2005) Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. J Antimicrob Chemother 56(1):216–219. doi: 10.1093/jac/dki161 PubMedCrossRefGoogle Scholar
  42. Stalder T, Barraud O, Jove T, Casellas M, Gaschet M, Dagot C, Ploy MC (2014) Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. ISME J 8(4):768–777. doi: 10.1038/ismej.2013.189 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Stedtfeld RD, Baushke SW, Tourlousse DM, Miller SM, Stedtfeld TM, Gulari E, Tiedje JM, Hashsham SA (2008) Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol 74(12):3831–3838. doi: 10.1128/AEM. 02743-07 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Stokes HW, Nesbo CL, Holley M, Bahl MI, Gillings MR, Boucher Y (2006) Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 188(16):5722–5730. doi: 10.1128/jb.01950-05 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010a) Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ Sci Technol 44(6):1947–1953. doi: 10.1021/es902893f PubMedCrossRefGoogle Scholar
  46. Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010b) Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol 44(19):7397–7404. doi: 10.1021/es101657s PubMedCrossRefGoogle Scholar
  47. Su JQ, Wei B, Xu CY, Qiao M, Zhu YG (2014) Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ Int 65:9–15. doi: 10.1016/j.envint.2013.12.010 PubMedCrossRefGoogle Scholar
  48. Varela AR, Ferro G, Vredenburg J, Yanik M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450:155–161. doi: 10.1016/j.scitotenv.2013.02.015 PubMedCrossRefGoogle Scholar
  49. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110(9):3435–3440. doi: 10.1073/pnas.1222743110 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wei-Ying Ouyang
    • 1
    • 2
  • Fu-Yi Huang
    • 1
  • Yi Zhao
    • 1
  • Hu Li
    • 1
    • 2
  • Jian-Qiang Su
    • 1
    Email author
  1. 1.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations