Skip to main content

Advertisement

Log in

Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial communities in the pig gut perform a variety of beneficial functions. Along with host genetics and diet, farm management practices are an important aspect of agricultural animal production that could influence gut microbial diversity. In this study, we used barcoded pyrosequencing of the V1–V3 regions of the 16S ribosomal RNA (rRNA) genes to characterise the faecal microbiome of three common commercial purebred pig lines (Duroc, Landrace and Yorkshire) before and after cohabitation. The diversity of faecal microbiota was characterised by employing phylogenetic, distance-based and multivariate-clustering approaches. Bacterial diversity tended to become more uniform after mixing of the litters. Age-related shifts were also observed at various taxonomic levels, with an increase in the proportion of the phylum Firmicutes and a decrease in Bacteroidetes over time, regardless of the purebred group. Cohabitation had a detectable effect on the microbial shift among purebred pigs. We identified the bacterial genus Parasutterella as having utility in discriminating pigs according to time. Similarly, Dialister and Bacteroides can be used to differentiate the purebred lines used. The microbial communities of the three purebred pigs became more similar after cohabitation, but retained a certain degree of breed specificity, with the microbiota of Landrace and Yorkshire remaining distinct from that of their distant relative, Duroc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bohnenkamp A-L, Traulsen I, Meyer C, Müller K, Krieter J (2013) Comparison of growth performance and agonistic interaction in weaned piglets of different weight classes from farrowing systems with group or single housing. Animal 7:309–315

    Article  PubMed  Google Scholar 

  • Campbell JH, Foster CM, Vishnivetskaya T, Campbell AG, Yang ZK, Wymore A, Palumbo AV, Chesler EJ, Podar M (2012) Host genetic and environmental effects on mouse intestinal microbiota. ISME J 6:2033–2044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Fàbrega E, Puigvert X, Soler J, Tibau J, Dalmau A (2013) Effect of on farm mixing and slaughter strategy on behaviour, welfare and productivity in Duroc finished entire male pigs. Appl Anim Behav Sci 143:31–39

    Article  Google Scholar 

  • Gustafsson BE (1959) Vitamin K deficiency in germfree rats. Ann N Y Acad Sci 78:166–174

    Article  CAS  PubMed  Google Scholar 

  • Guzman JR, Conlin VS, Jobin C (2013) Diet, microbiome, and the intestinal epithelium: an essential triumvirate? Biomed Res Int 2013:425146–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6:39–51

    Article  CAS  Google Scholar 

  • Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4

    Article  PubMed Central  PubMed  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Ibánez-Escriche N, Fernando RL, Toosi A, Dekkers JCM (2009) Genomic selection of purebreds for crossbred performance. Genet Sel Evol 41:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Ibáñez-Escriche N, Reixach J, Lleonart N, Noguera JL (2011) Genetic evaluation combining purebred and crossbred data in a pig breeding scheme. J Anim Sci 89:3881–3889

    Article  PubMed  Google Scholar 

  • Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13:100–109

    Article  PubMed  Google Scholar 

  • Jeon YS, Chun J, Kim BS (2013) Identification of household bacterial community and analysis of species shared with human microbiome. Curr Microbiol 67:557–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124–133

    Article  PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2012) Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc Natl Acad Sci U S A 109:15485–15490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kittawornrat A, Zimmerman JJ (2011) Toward a better understanding of pig behavior and pig welfare. Anim Health Res Rev 12:25–32

    Article  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamendella R, Li KC, Oerther D, Santo Domingo JW (2013) Molecular diversity of Bacteroidales in fecal and environmental samples and swine-associated subpopulations. Appl Environ Microbiol 79:816–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006b) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li YZ, Johnston LJ (2009) Behavior and performance of pigs previously housed in large groups. J Anim Sci 87:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Li YZ, Wang LH, Johnston LJ (2012) Effects of farrowing system on behavior and growth performance of growing-finishing pigs. J Anim Sci 90:1008–1014

    Article  CAS  PubMed  Google Scholar 

  • McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S, Andreux PA, Bastiaansen JWM, Wang X, Kachman SD, Auwerx J, Williams RW, Benson AK, Peterson DA, Ciobanu DC (2012) Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 7:e39191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo K-S, Kang D-K (2014a) Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52:646–651

    Article  PubMed  Google Scholar 

  • Pajarillo EAB, Chae JP, Parungao-Balolong MM, Kim HB, Kang D-K (2014b) Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 60:140–146

    Article  CAS  Google Scholar 

  • Rajilić-Stojanović M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136

    Article  PubMed  Google Scholar 

  • Rydhmer L, Hansson M, Lundström K, Brunius C, Andersson K (2013) Welfare of entire male pigs is improved by socialising piglets and keeping intact groups until slaughter. Animal 7:1532–1541

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, West SE, Vercellotti JR, Wilkins TD (1977) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34:529–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schachtschneider K (2013) Gastrointestinal microbiota community composition has significant effects on systemic immune responses. Dissertation, University of Illinois, USA.

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selle K, Klaenhammer T (2013) Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37:915–935

    CAS  PubMed  Google Scholar 

  • Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e00458–e00458

    PubMed Central  PubMed  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Swanson SP, Rood HD, Behrens JC, Sanders PE (1987) Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol. Appl Environ Microbiol 53:2821–2826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson CL, Wang B, Holmes AJ (2008) The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J 2:739–748

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willing BP, Van Kessel AG (2010) Host pathways for recognition: establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livest Sci 133:82–91

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ01115903), Rural Development Administration, Republic of Korea. The present research was also conducted by the research fund of Dankook University in 2014.

The language in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/Ly9PXf

Conflict of interest

No conflict of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyung Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajarillo, E.A.B., Chae, J.P., Kim, H.B. et al. Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Appl Microbiol Biotechnol 99, 5647–5656 (2015). https://doi.org/10.1007/s00253-015-6408-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6408-5

Keywords