Skip to main content
Log in

Guidelines for development and implementation of biocatalytic P450 processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajikumar PK, Xiao W, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science (Washington, DC, U S) 330:70–74

    Article  CAS  Google Scholar 

  • Armstrong FH, Fisher KC (1947) The oxygen consumption associated with growth in Escherichia coli and the effect of sulfathiazole and of n-propyl carbamate on it. J Gen Physiol 30:279–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldwin CVF, Woodley JM (2006) On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnol Bioeng 95:362–369

    Article  CAS  PubMed  Google Scholar 

  • Bell SG, McMillan JH, Yorke JA, Kavanagh E, Johnson EO, Wong L (2012) Tailoring an alien ferredoxin to support native-like P450 monooxygenase activity. Chem Commun 48:11692–11694

    Article  CAS  Google Scholar 

  • Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98:6185–6203

    Article  CAS  PubMed  Google Scholar 

  • Blank LM, Ebert BE, Bühler B, Schmid A (2008) Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint‐based modeling and experimental verification. Biotechnol Bioeng 100:1050–1065

    Article  CAS  PubMed  Google Scholar 

  • Bleif S, Hannemann F, Zapp J, Hartmann D, Jauch J, Bernhardt R (2012) A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 93:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Bordeaux M, Galarneau A, Fajula F, Drone J (2011) A regioselective biocatalyst for alkane activation under mild conditions. Angew Chem Int Ed 123:2123–2127

    Article  Google Scholar 

  • Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A (2012) Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb Cell Fact 11:106–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bühler B, Schmid A (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 113:183–210

    Article  PubMed  CAS  Google Scholar 

  • Bühler B, Straathof AJJ, Witholt B, Schmid A (2006) Analysis of two-liquid-phase multistep biooxidation based on a process model: indications for biological energy shortage. Org Process Res Dev 10:628–643

    Article  CAS  Google Scholar 

  • Bühler B, Park JB, Blank LM, Schmid A (2008) NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 74:1436–1446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chefson A, Zhao J, Auclair K (2006) Replacement of natural cofactors by selected hydrogen peroxide donors or organic peroxides results in improved activity for CYP3A4 and CYP2D6. Chembiochem 7:916–919

    Article  CAS  PubMed  Google Scholar 

  • Chen RR (2007) Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 74:730–738

    Article  CAS  PubMed  Google Scholar 

  • Cirino PC, Arnold FH (2003) A self‐sufficient peroxide‐driven hydroxylation biocatalyst. Angew Chem Int Ed 115:3421–3423

    Article  Google Scholar 

  • Cirino PC, Arnold FH (2008) Polymorphic monooxygenase comprising mutation in heme domain of a secondary structural element and enhanced heat stability; improved peroxide-driven hydroxylation. US7465567 B2

  • Cornelissen S, Liu S, Deshmukh AT, Schmid A, Bühler B (2011) Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C–H-oxyfunctionalization. J Ind Microbiol Biotechnol 38:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Bühler B (2013) Whole‐cell‐based CYP153A6‐catalyzed (S)‐limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 110:1282–1292

    Article  CAS  PubMed  Google Scholar 

  • Cote P, Bersillon JL, Huyard A, Faup G (1988) Bubble-free aeration using membranes: process analysis. J Water Pollut Control Fed 60:1986–1992

    CAS  Google Scholar 

  • Dafoe JT, Daugulis AJ (2014) In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 36:443–460

    Article  CAS  PubMed  Google Scholar 

  • De Montellano PRO (2005) Cytochrome P450: structure, mechanism, and biochemistry. Plenum, New York

    Book  Google Scholar 

  • Drăgan CA, Peters FT, Bour P, Schwaninger AE, Schaan SM, Neunzig I, Widjaja M, Zapp J, Kraemer T, Maurer HH (2011) Convenient gram-scale metabolite synthesis by engineered fission yeast strains expressing functional human P450 systems. Appl Biochem Biotechnol 163:965–980

    Article  PubMed  CAS  Google Scholar 

  • Duetz WA, Van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  PubMed  Google Scholar 

  • Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16:186–189

    Article  CAS  PubMed  Google Scholar 

  • Eiben S, Kaysser L, Maurer S, Kühnel K, Urlacher VB, Schmid RD (2006) Preparative use of isolated CYP102 monooxygenases—a critical appraisal. J Biotechnol 124:662–669

    Article  CAS  PubMed  Google Scholar 

  • Eiben S, Bartelmäs H, Urlacher VB (2007) Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents. Appl Microbiol Biotechnol 75:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Ewen KM, Ringle M, Bernhardt R (2012) Adrenodoxin—a versatile ferredoxin. IUBMB Life 64:506–512

    Article  CAS  PubMed  Google Scholar 

  • Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane‐hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed 119:8566–8570

    Article  Google Scholar 

  • Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH (2011) Improved product‐per‐glucose yields in P450‐dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 108:500–510

    Article  CAS  PubMed  Google Scholar 

  • Favre-Bulle O, Witholt B (1992) Biooxidation of n-octane by a recombinant Escherichia coli in a two-liquid-phase system: effect of medium components on cell growth and alkane oxidation activity. Enzyme Microb Technol 14:931–937

    Article  CAS  Google Scholar 

  • Fujii T, Fujii Y, Machida K, Ochiai A, Ito M (2009) Efficient biotransformations using Escherichia coli with tolC acrAB mutations expressing cytochrome P450 genes. Biosci Biotechnol Biochem 73:805–810

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Arai Y, Kino K (2012) Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Appl Environ Microbiol 78:6087–6094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillam EMJ, Hayes MA (2013) The evolution of cytochrome P450 enzymes as biocatalysts in drug discovery and development. Curr Top Med Chem 13:2254–2280

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Woodley JM, Baganz F (2011) Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzyme Microb Technol 48:480–486

    Article  CAS  PubMed  Google Scholar 

  • Grogan G (2011) Cytochromes P450: exploiting diversity and enabling application as biocatalysts. Curr Opin Chem Biol 15:241–248

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Munro AW (2013) Unusual cytochrome p450 enzymes and reactions. J Biol Chem 288:17065–17073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hakki T, Zearo S, Dragan C, Bureik M, Bernhardt R (2008) Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol 133:351–359

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. BBA-Gen Subjects 1770:330–344

    Article  CAS  Google Scholar 

  • Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Microbial transformations, 56. Preparative scale asymmetric Baeyer–Villiger oxidation using a highly productive “Two‐in‐One” resin‐based in situ SFPR concept. Adv Synth Catal 346:203–214

    Article  CAS  Google Scholar 

  • Hirakawa H, Nagamune T (2010) Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. ChemBioChem 11:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Hlavica P (2009) Assembly of non-natural electron transfer conduits in the cytochrome P450 system: a critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 27:103–121

    Article  CAS  PubMed  Google Scholar 

  • Hollmann F, Hofstetter K, Schmid A (2006) Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 24:163–171

    Article  CAS  PubMed  Google Scholar 

  • Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature (London) 399:670–673

    Article  CAS  Google Scholar 

  • Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186

    Article  CAS  PubMed  Google Scholar 

  • Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung ST, Lauchli R, Arnold FH (2011) Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 22:809–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Ortiz de Montellano PR (2009) Tricistronic overexpression of cytochrome P450 cam, putidaredoxin, and putidaredoxin reductase provides a useful cell-based catalytic system. Biotechnol Lett 31:1427–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleser M, Hannemann F, Hutter M, Zapp J, Bernhardt R (2012) CYP105A1 mediated 3-hydroxylation of glimepiride and glibenclamide using a recombinant Bacillus megaterium whole-cell catalyst. J Biotechnol 157:405–412

    Article  CAS  PubMed  Google Scholar 

  • Kolar NW, Swart AC, Mason JI, Swart P (2007) Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris. J Biotechnol 129:635–644

    Article  CAS  PubMed  Google Scholar 

  • Kuhn D, Bühler B, Schmid A (2012) Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas. J Ind Microbiol Biotechnol 39:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Labinger JA (2004) Selective alkane oxidation: hot and cold approaches to a hot problem. J Mol Catal A Chem 220:27–35

    Article  CAS  Google Scholar 

  • Lamb SB, Lamb DC, Kelly SL, Stuckey DC (1998) Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis. FEBS Lett 431:343–346

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Kim M, Jin Y, Seo J (2013) Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97:2761–2772

    Article  CAS  PubMed  Google Scholar 

  • Lewis JC, Arnold FH (2009) Catalysts on demand: selective oxidations by laboratory-evolved cytochrome P450 BM3. CHIMIA Int J Chem 63:309–312

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  • Lima-Ramos J, Tufvesson P, Woodley JM (2014) Application of environmental and economic metrics to guide the development of biocatalytic processes. Green Proc Synth 3:195–213

    CAS  Google Scholar 

  • Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M (2001) Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos 29:368–374

    CAS  PubMed  Google Scholar 

  • Liu Y, Kondo A, Ohkawa H, Shiota N, Fukuda H (1998) Bioconversion using immobilized recombinant flocculent yeast cells carrying a fused enzyme gene in an ‘intelligent’ bioreactor. Biochem Eng J 2:229–235

    Article  CAS  Google Scholar 

  • Liu S, Li C, Fang X, Cao Z (2004) Optimal pH control strategy for high-level production of long-chain α, ω-dicarboxylic acid by Candida tropicalis. Enzyme Microb Technol 34:73–77

    Article  CAS  Google Scholar 

  • Lye GJ, Woodley JM (1999) Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol 17:395–402

    Article  CAS  PubMed  Google Scholar 

  • Lynch RM, Woodley JM, Lilly MD (1997) Process design for the oxidation of fluorobenzene to fluorocatechol by Pseudomonas putida. J Biotechnol 58:167–175

    Article  CAS  Google Scholar 

  • Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12:81–86

    Article  CAS  Google Scholar 

  • Malca S (2012) Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chem Commun 48:5115–5117

    Article  CAS  Google Scholar 

  • Martinez CA, Rupashinghe SG (2013) Cytochrome P450 bioreactors in the pharmaceutical industry: challenges and opportunities. Curr Top Med Chem 13:1470–1490

    Article  CAS  PubMed  Google Scholar 

  • Maurer SC, Schulze H, Schmid RD, Urlacher V (2003) Immobilisation of P450 BM‐3 and an NADP cofactor recycling system: towards a technical application of heme‐containing monooxygenases in fine chemical synthesis. Adv Synth Catal 345:802–810

    Article  CAS  Google Scholar 

  • Maurer SC, Kühnel K, Kaysser LA, Eiben S, Schmid RD, Urlacher VB (2005) Catalytic hydroxylation in biphasic systems using CYP102A1 mutants. Adv Synth Catal 347:1090–1098

    Article  CAS  Google Scholar 

  • McIntosh JA, Farwell CC, Arnold FH (2014) Expanding P450 catalytic reaction space through evolution and engineering. Curr Opin Chem Biol 19:126–134

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Buehler B, Schmid A (2006) Process and catalyst design objectives for specific redox biocatalysis. Adv Appl Microbiol 59:53–91

    Article  CAS  PubMed  Google Scholar 

  • Michener JK, Nielsen J, Smolke CD (2012) Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc Natl Acad Sci U S A 109:19504–19509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M (2006) A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl Microbiol Biotechnol 72:514–520

    Article  CAS  PubMed  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007a) Variations on a (t) heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609

    Article  CAS  PubMed  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007b) Cytochrome P450—redox partner fusion enzymes. BBA-Gen Subjects 1770:345–359

    Article  CAS  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nthangeni M, Urban P, Pompon D, Smit M, Nicaud J (2004) The use of Yarrowia lipolytica for the expression of human cytochrome P450 CYP1A1. Yeast 21:583–592

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly E, Köhler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun 47:2490–2501

    Article  CAS  Google Scholar 

  • Oudshoorn A, van den Berg C, Roelands C, Straathof A, Van der Wielen L (2010) Short-cut calculations for integrated product recovery options in fermentative production of bio-bulk chemicals. Process Biochem 45:1605–1615

    Article  CAS  Google Scholar 

  • Paddon C, Westfall P, Pitera D, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two‐component styrene monooxygenase. Biotechnol Bioeng 69:91–100

    Article  CAS  PubMed  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot‐scale production of (S)‐styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Lee JK, Kwon TJ, Yi DH, Kim YJ, Moon SH, Suh HH, Kang SM, Park YI (2003) Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol Lett 25:1827–1831

    Article  CAS  PubMed  Google Scholar 

  • Pflug S, Richter SM, Urlacher VB (2007) Development of a fed-batch process for the production of the cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium in E. coli. J Biotechnol 129:481–488

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Rendic S, Guengerich FP (2010) Update information on drug metabolism systems—2009, part II. Summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 11:4–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richardson TH, Jung F, Griffin KJ, Wester M, Raucy JL, Kemper B, Bornheim LM, Hassett C, Omiecinski CJ, Johnson EF (1995) A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in Escherichia coli. Arch Biochem Biophys 323:87–96

    Article  CAS  PubMed  Google Scholar 

  • Robin A, Roberts GA, Kisch J, Sabbadin F, Grogan G, Bruce N, Turner NJ, Flitsch SL (2009) Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem Comm:2478–2480

  • Ryan JD, Clark DS (2008) P450cam biocatalysis in surfactant‐stabilized two‐phase emulsions. Biotechnol Bioeng 99:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi SJ, Gilardi G (2013) Chimeric P450 enzymes: activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 60:102–110

    Article  CAS  PubMed  Google Scholar 

  • Salazar O, Cirino PC, Arnold FH (2003) Thermostabilization of a cytochrome P450 peroxygenase. Chem Biochem 4:891–893

    CAS  Google Scholar 

  • Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    Article  CAS  PubMed  Google Scholar 

  • Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheps D, Honda Malca S, Richter SM, Marisch K, Nestl BM, Hauer B (2013) Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microb Biotechnol 6:694–707

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schewe H, Kaup BA, Schrader J (2008) Improvement of P450 BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl Microbiol Biotechnol 78:55–65

    Article  CAS  PubMed  Google Scholar 

  • Schewe H, Holtmann D, Schrader J (2009) P450 BM-3-catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system. Appl Microbiol Biotechnol 83:849–857

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Kollmer A, Mathys RG, Witholt B (1998a) Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles 2:249–256

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Sonnleitner B, Witholt B (1998b) Medium chain length alkane solvent‐cell transfer rates in two‐liquid phase, Pseudomonas oleovorans cultures. Biotechnol Bioeng 60:10–23

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P-450BM-3 monooxygenase. Appl Environ Microbiol 64:3784–3790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42:6346–6377

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Girhard M, Urlacher VB (2012) Biocatalysis: key to selective oxidations. ChemCatChem 4:1889–1895

    Article  CAS  Google Scholar 

  • Schumacher SD, Jose J (2012) Expression of active human P450 3A4 on the cell surface of Escherichia coli by Autodisplay. J Biotechnol 161:113–120

    Article  CAS  PubMed  Google Scholar 

  • Schumacher SD, Hannemann F, Teese MG, Bernhardt R, Jose J (2012) Autodisplay of functional CYP106A2 in Escherichia coli. J Biotechnol 161:104–112

    Article  CAS  PubMed  Google Scholar 

  • Schwaneberg U, Appel D, Schmitt J, Schmid RD (2000) P450 in biotechnology: zinc driven ω-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J Biotechnol 84:249–257

    Article  CAS  PubMed  Google Scholar 

  • Seifert A, Antonovici M, Hauer B, Pleiss J (2011) An efficient route to selective bio-oxidation catalysts: an iterative approach comprising modeling, diversification, and screening, based on CYP102A1. ChemBioChem 12:1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Seng Wong T, Arnold FH, Schwaneberg U (2004) Laboratory evolution of cytochrome P450 BM‐3 monooxygenase for organic cosolvents. Biotechnol Bioeng 85:351–358

    Article  CAS  Google Scholar 

  • Shet MS, Fisher CW, Estabrook RW (1997) The function of recombinant cytochrome P450s in intact Escherichia coli cells: the 17α-hydroxylation of progesterone and pregnenolone by P450c17. Arch Biochem Biophys 339:218–225

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Lilly MD, Woodley JM (2003) Regiospecific naphthalene monohydroxylation by a recombinant yeast producing a P4501A1–yeast reductase fused enzyme. Enzyme Microb Technol 33:606–611

    Article  CAS  Google Scholar 

  • Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S (2012) Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl Microbiol Biotechnol 95:357–367

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  • Staijen IE, van Beilen JB, Witholt B (2000) Expression, stability and performance of the three‐component alkane mono‐oxygenase of Pseudomonas oleovorans in Escherichia coli. Eur J Biochem 267:1957–1965

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Lamb DC, Cannell RJP, Dawson MJ, Kelly SL (2000) Cofactor recycling with immobilized heterologous cytochrome P450 105D1 (CYP105D1). Biochem Biophys Res Commun 279:708–711

    Article  CAS  PubMed  Google Scholar 

  • Tran N, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen T, Cheruzel LE (2013) An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc 135:14484–14487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274

    Article  CAS  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  CAS  PubMed  Google Scholar 

  • Vail RB, Homann MJ, Hanna I, Zaks A (2005) Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with NADPH-P450 reductase expressed in Escherichia coli. J Ind Microbiol Biotechnol 32:67–74

    Article  CAS  PubMed  Google Scholar 

  • Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Walton AZ, Stewart JD (2002) An efficient enzymatic Baeyer–Villiger oxidation by engineered escherichia coli cells under Non-growing conditions. Biotechnol Prog 18:262–268

  • Walton AZ, Stewart JD (2004) Understanding and improving NADPH‐dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  CAS  PubMed  Google Scholar 

  • Weber E, Sirim D, Schreiber T, Thomas B, Pleiss J, Hunger M, Gläser R, Urlacher VB (2010) Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters. J Mol Catal B 64:29–37

    Article  CAS  Google Scholar 

  • Whitehouse CJ, Bell SG, Wong L (2012) P450BM3 (CYP102A1): connecting the dots. Chem Soc Rev 41:1218–1260

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth R, Woodley JM (2010) Asymmetric Baeyer–Villiger reactions using whole-cell biocatalysts. Asymmetric Catal Ind Scale (2nd Ed):230–248

  • Woodley J (2006) Choice of biocatalyst form for scalable processes. Biochem Soc Trans 34:301–303

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM, Bisschops M, Straathof AJJ, Ottens M (2008) Future directions for in-situ product removal (ISPR). J Chem Technol Biotechnol 83:121–123

    Article  CAS  Google Scholar 

  • Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S (2010a) Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. ChemBioChem 11:713–721

    Article  CAS  PubMed  Google Scholar 

  • Zehentgruber D, Drǎgan C, Bureik M, Lütz S (2010b) Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J Biotechnol 146:179–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, O’Connor K, Wang DI, Li Z (2009) Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol 75:687–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Li A, Xu J (2010) Improved expression of recombinant cytochrome P450 monooxygenase in Escherichia coli for asymmetric oxidation of sulfides. Bioprocess Biosyst Eng 33:1043–1049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MTL has received funding from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme (FP7/2007-2013) under REA Grant Agreement 289217.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Woodley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundemo, M.T., Woodley, J.M. Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 99, 2465–2483 (2015). https://doi.org/10.1007/s00253-015-6403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6403-x

Keywords

Navigation