Applied Microbiology and Biotechnology

, Volume 99, Issue 5, pp 2065–2082 | Cite as

Principles, techniques, and applications of biocatalyst immobilization for industrial application

  • Ismail Eş
  • José Daniel Gonçalves Vieira
  • André Corrêa AmaralEmail author


Immobilization is one of the most effective and powerful tools used in industry, which has been studied and improved since the last century. Various immobilization techniques and support materials have been used on both laboratory and industrial scale. Each immobilization technique is applicable for a specific production mostly depending on the cost and sensibility of process. Compared to free biocatalyst systems, immobilization techniques often offer better stability, increased activity and selectivity, higher resistance, improved separation and purification, reuse of enzymes, and consequently more efficient process. Recently, many reviews have been published about immobilization systems; however, most of them have focused on a specific application or not emphasized in details. This review focuses on most commonly used techniques in industry with many recent applications including using bioreactor systems for industrial production. It is also aimed to emphasize the advantages and disadvantages of the immobilization techniques and how these systems improve process productivity compared to non-immobilized systems.


Immobilization Biocatalysts Bioprocess Bioreactor 



Authors thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for the scholarship for Ismail Eş.


  1. Abdulla R, Ravindra P (2013) Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy 56:8–13Google Scholar
  2. Aehle W (2006) Enzymes in industry: products and applications. John Wiley & Sons pp 73Google Scholar
  3. Aguilera JM, Barbosa-Cánovas GV, Simpson R, Welti-Chanes J, Bermúdez-Aguirre D (2010) Food engineering interfaces. Springer pp 121Google Scholar
  4. Akashi N, Kuroda S (2015) Preparation and characterization of protein A-immobilized PVDF and PES membranes. Express Polym Lett 9(1):2–13CrossRefGoogle Scholar
  5. Akin C (1987) In: Russell GE (ed) Biotechnology and Genetic engineering reviews: biocatalysis with immobilized cells 5(1):319–367Google Scholar
  6. Albertsson PA (1986) Partitioning of cell particles and macromolecules, 3rd edn. Wiley, New YorkGoogle Scholar
  7. Almonacid SF, Nájera AL, Young ME, Simpson RJ, Acevedo CA (2012) A comparative study of stout beer batch fermentation using free and microencapsulated yeasts. Food Bioprocess Technol 5(2):750–758CrossRefGoogle Scholar
  8. Amaral AC, Felipe MS (2013) Nanobiotechnology: an efficient approach to drug delivery of unstable biomolecules. Curr Protein Pept Sci Curr 14:588–594CrossRefGoogle Scholar
  9. Araki T, Tsukube H (1990) Liquid membranes: chemical applications. CRC Press pp 35Google Scholar
  10. Arenas E, Castillón FF, Farías MH (2012) EDC and sulfo-NHS functionalized on PVC-g-PEGMA for streptokinase immobilization. Des Monomers Polym 15(4):369–378CrossRefGoogle Scholar
  11. Arora DK (2003) Handbook of fungal biotechnology. CRC Press pp 294Google Scholar
  12. Ateş S, Mehmetoğlu Ü (1997) A new method for immobilization of β-galactosidase and its utilization in a plug flow reactor. Process Biochem 32(5):433–436CrossRefGoogle Scholar
  13. Atkinson B, Black GM, Pinches A (1980) Process intensification using cell support systems. Process Biochem 15:24–32Google Scholar
  14. Bahreini E, Aghaiypour K, Abbasalipourkabir R, Mokarram AR, Goodarzi MT, Saidijam M (2014) Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett 9(1):1–13CrossRefGoogle Scholar
  15. Bayramoğlu G, Yilmaz M, Arica YM (2010) Reversible immobilization of laccase to poly-4-vinylpyridine grafted and Cu (II) chelated magnetic beads: biodegradation of reactive dyes. Bioresour Technol 101(17):6615–6621CrossRefPubMedGoogle Scholar
  16. Bhamidimarri SMR (1990) In: Tyagi RD, Vembu K (ed) Wastewater treatment by immobilized cells. CRC Press pp 30Google Scholar
  17. Bódalo A, Bastida J, Máximo MF, Montiel MC, Gómez M, Murcia MD (2008) A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bioprocess Biosyst Eng 31(6):587–593CrossRefPubMedGoogle Scholar
  18. Bolivar JM, Nidetzky B (2012) Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Zbasic2: design of a heterogeneous d‐amino acid oxidase catalyst on porous glass. Biotechnol Bioeng 109(6):1490–1498CrossRefPubMedGoogle Scholar
  19. Branyik T, Vicente AA, Dostalek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21(3):653–663CrossRefPubMedGoogle Scholar
  20. Brar SK, Dhillon GS, Fernandes M (2014) Biotransformation of waste biomass into high value biochemicals. Das D, Goyal AIn: (ed) Pharmaceutical enzymes Springer pp 367–387Google Scholar
  21. Breguet V, Vojinovic V, Marison IW (2010) In: Zuidam NJ, Nedovic V (ed) Encapsulation technologies for active food ingredients and food processing pp 367Google Scholar
  22. Brodelius P, Nilsson K (1980) Entrapment of plants cells in different matrices: a comparative study. FEBS Lett 122(2):312–316CrossRefGoogle Scholar
  23. Bronzino JD (2000) Biomedical engineering handbook. Vol 2 CRC press pp X4Google Scholar
  24. Cao L (2006) Carrier-bound immobilized enzymes: principles, applications and design. John Wiley & Sons pp 131Google Scholar
  25. Carrea G, Riva S (2008) Organic synthesis with enzymes in non-aqueous media. John Wiley & Sons pp 216–222Google Scholar
  26. Cazes M, Belleville MP, Petit E, Llorca M, Rodriguez-Mozaz S, Gunzbrurg J, Barcelo D, Sanchez-Marcano J (2014) Design and optimization of an enzymatic membrane reactor for tetracycline degradation. Catal Today 236:146–152CrossRefGoogle Scholar
  27. Chakraborty S, Drioli E, Giorno L (2012) Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. Biomass Bioenergy 46:574–583CrossRefGoogle Scholar
  28. Chen C, Ko YM, Shieh CJ, Liu YC (2011) Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane. J Membr Sci 380(1):34–40CrossRefGoogle Scholar
  29. Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, Zhang HP, Zhang H (2009) Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 92(2):491–498CrossRefPubMedGoogle Scholar
  30. Chibata I, Tosa T, Sato T, Mori T (1976) Production of ʟ-amino acids by aminoacylase adsorbed on DEAE-sephadex. Methods Enzymol 44:746–759CrossRefPubMedGoogle Scholar
  31. Cho GH, Cha YC, Yang DC, Moon HH (1981) Continuous ethanol production by immobilized yeast in a fluidized reactor. Biotechnol lett 11(3):667–671Google Scholar
  32. Conley SP (2006) What is biodiesel? Purdue Extension Bioenerg series ID-336-337Google Scholar
  33. Cullinan P, Harris JM, Taylor AJ, Hole AM, Jones M, Barnes F, Jolliffe G (2000) An outbreak of asthma in a modern detergent factory. Lancet 356(9245):1899–1900CrossRefPubMedGoogle Scholar
  34. Dai Y, Shao R, Qi G, Ding BB (2014) Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane–water biphasic system. Appl Biochem Biotechnol 174(6):2236–2244CrossRefPubMedGoogle Scholar
  35. Darnall DW, Greene B, Henzl MT, Hosea JM, McPherson RA, Sneddon J, Alexander MD (1986) Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 20(2):206–208CrossRefPubMedGoogle Scholar
  36. Denbigh KG, Turner JCR (1984) Chemical reactor theory: an introduction. CUP Archive pp 64Google Scholar
  37. Dolui AK, Sahana S, Kumar A (2011) Studies on production of 6-aminopenicillanic acid by free and κ-carrageenan immobilized soil bacteria. Indian J Pharm Educ Res 46(1):70–74Google Scholar
  38. Drioli E, Giorno L (1998) Biocatalytic membrane reactors: applications in biotechnology and the pharmaceutical industry. CRC Press pp 51–52Google Scholar
  39. Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility. CRC Press pp 868Google Scholar
  40. Esawy MA, Gamal AA, Kamel Z, Ismail AMS, Abdel-Fattah AF (2013) Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr Polym 92(2):1463–1469CrossRefPubMedGoogle Scholar
  41. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315CrossRefPubMedGoogle Scholar
  42. Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41(14):4966–4995CrossRefPubMedGoogle Scholar
  43. Ganatsios V, Koutinas AA, Bekatorou A, Kanellaki M, Nigam P (2014) Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Enzym Microb Technol 66:56–59CrossRefGoogle Scholar
  44. Genisheva Z, Mussatto SI, Oliveira JM, Teixeira JA (2011) Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Ind Crop Prod 34(1):979–985CrossRefGoogle Scholar
  45. Ghosh S, Chaganti SR, Prakasham RS (2012) Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. J Mol Catal B Enzym 74(1):132–137CrossRefGoogle Scholar
  46. Goosen MFA (1992) Fundamentals of animal cell encapsulation and immobilization. CRC Press pp 301Google Scholar
  47. Guisan JM (2006) Immobilization of enzymes and cells. Humana Press, Totowa, pp 5–78CrossRefGoogle Scholar
  48. Gungormusler M, Gonen C, Azbar N (2011) Continuous production of 1, 3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess Biosyst Eng 34(6):727–733CrossRefPubMedGoogle Scholar
  49. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32CrossRefPubMedGoogle Scholar
  50. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616CrossRefGoogle Scholar
  51. Gupta K, Jana AK, Kumar S, Maiti M (2013) Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst Eng 36(11):1715–1724CrossRefPubMedGoogle Scholar
  52. Haider T, Husain Q (2009) Hydrolysis of milk/whey lactose by β-galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem Eng Process Process Intensif 48(1):576–580CrossRefGoogle Scholar
  53. Harriott P (2002) Chemical reactor design. CRC Press pp: 99Google Scholar
  54. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251CrossRefGoogle Scholar
  55. Hashemizadeh SN, Tavakoli O, Tabandeh F, Karkhane AA, Forghanipour Z (2011) A comparative study of immobilized-whole cell and commercial lipase as a biocatalyst for biodiesel production from soybean oil. World renewable energy congress pp 311–318Google Scholar
  56. Hildebrand F, Lütz S (2006) Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron Asymmetry 17(23):3219–3225CrossRefGoogle Scholar
  57. Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299Google Scholar
  58. Jack TR, Zajic JE (1997) Advances in biochemical engineering: the immobilization of whole cells, vol 5. Springer, Berlin, pp 125–145Google Scholar
  59. Jogdand VG, Chavan PA, Ghogare PD, Jadhav AG (2012) Remediation of textile industry waste water using immobilized Aspergillus terreus. Eur J Exp Biol 2(5):1550–1555Google Scholar
  60. Jun SH, Lee J, Kim BC, Lee JR, Joo J, Park H, Lee JO, Lee SM, Lee D, Kim S, Koo YM, Shin CH, Kim SW, Hyeon T, Kim J (2012) Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem Mater 24(5):924–929CrossRefGoogle Scholar
  61. Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11(11):471–478CrossRefPubMedGoogle Scholar
  62. Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10(1):157–176CrossRefGoogle Scholar
  63. Keskin T, Giusti L, Azbar N (2012) Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int J Hydrog Energy 37(2):1418–1424CrossRefGoogle Scholar
  64. Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: a review. Res J Biol Sci 5(8):565–575CrossRefGoogle Scholar
  65. Kim DH, Baek H, Hong SU, Lee HK (2011) Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. J Membr Sci 372(1):346–354CrossRefGoogle Scholar
  66. Kingstad KP, Lindstrom PK (1984) Spent liquors from pulp bleaching. Environ Sci Technol 18:236A–248ACrossRefGoogle Scholar
  67. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351CrossRefPubMedGoogle Scholar
  68. Kislik VS (2009) Liquid membranes: principles and applications in chemical separations and wastewater treatment. Elsevier pp 5Google Scholar
  69. Krishna PN (2011) Enzyme technology: pacemaker of biotechnology. PHI Learn Pvt Ltd pp 264Google Scholar
  70. Kök FN, Bozoglu F, Hasirci V (2001a) Immobilization of acetylcholinesterase and choline oxidase in/on pHEMA membrane for biosensor construction. J Biomater Sci Polym 12(11):1161–1176CrossRefGoogle Scholar
  71. Kök FN, Hasirci V, Arica MY (2001b) In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (ed) Bioremediation of contaminated soils. CRC Press. pp 134–135Google Scholar
  72. Kuhtreiber WM, Lanza RP, Chick WL (1999) Cell encapsulation technology and therapeutics. Springer pp 307Google Scholar
  73. Kulkarni G (2002) Biotechnology and its application in pharmacy. Jaypee Brothers Publ pp 66Google Scholar
  74. Kuo CH, Peng LT, Kan SC, Liu YC, Shieh CJ (2013) Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresour Technol 145:229–232CrossRefPubMedGoogle Scholar
  75. Leskosek-Cukalovic IJ, Nedovic VA (2005) Immobilized cell technology in beer brewing: current experience and results. Proc Natl Sci 109:129–141Google Scholar
  76. Li C, Li Y, Cheng X, Feng L, Xi C, Zhang Y (2013) Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour Technol 131:390–396CrossRefPubMedGoogle Scholar
  77. Ligler FS, Taitt CR (2011) Optical biosensors: today and tomorrow. Elsevier pp 151Google Scholar
  78. Lin R, Wu R, Huang X, Xie T (2011) Immobilization of oxalate decarboxylase to Eupergit and properties of the immobilized enzyme. Prep Biochem Biotechnol 41(2):154–165CrossRefPubMedGoogle Scholar
  79. Liu CH, Huang CC, Wang YW, Lee DJ, Chang JS (2012a) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46CrossRefGoogle Scholar
  80. Liu K, Zhao G, He B, Chen L, Huang L (2012b) Immobilization of lipase on chitosan beads for removal of pitch particles from whitewater during papermaking. Bio Resour 7(4):5460–5468Google Scholar
  81. Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. J Biotechnol 162(4):404–406CrossRefPubMedGoogle Scholar
  82. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  83. Ma X, Deng S, Su E, Wei D (2014) One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochem Eng J 95:1–8CrossRefGoogle Scholar
  84. Malaviya P, Rathore VS (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98(18):3647–3651CrossRefPubMedGoogle Scholar
  85. Malik SV, Kalia V, Pundir CS (2000) Immobilization of porcine pancreas lipase on zirconia coated alkylamine glass using glutaraldehyde. Indian J Chem Technol 7(2):64–67Google Scholar
  86. Matto M, Husain Q (2009) Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd Momordica charantia peroxidase. J Mol Catal B Enzym 57(1):164–170CrossRefGoogle Scholar
  87. Mensour NA, Margaritis A, Briends CL, Pilkington H, Russell I (1996) Application of immobilized yeast cells in the brewing industry. Elsevier Sci pp 661–662Google Scholar
  88. Mishra CSK, Champagne P (2009) Biotechnology applications. I. K. Int pp 39Google Scholar
  89. Modaresi SMS, Faramarzi MA, Soltani A, Baharifar H, Amani A (2014) Use of artificial neural networks to examine parameters affecting the immobilization of streptokinase in chitosan. Iran J Pharm Res 13(4):1379–1386PubMedCentralPubMedGoogle Scholar
  90. Mohanty K, Purkait MK (2011) Membrane technologies and applications. CRC Press pp 448–449Google Scholar
  91. Mojsov K (2011) Application of enzymes in the textile industry: a review (II. International Congress of Engineering, Ecology and Materials in the Processing Industry) pp 230–239Google Scholar
  92. Mosafa L, Shahedi M, Moghadam M (2014) Magnetite nanoparticles immobilized pectinase: preparation, characterization and application for the Fruit Juices Clarification. J Chin Chem Soc 61(3):329–336CrossRefGoogle Scholar
  93. Mrudula S, Nidhi S (2012) Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. Braz Arch Biol Technol 55(1):135–144CrossRefGoogle Scholar
  94. National Biodiesel Board. Biodiesel Report (March 1996)Google Scholar
  95. Nedovic V, Willaert R (2004) Fundamentals of cell immobilization biotechnology. Vol. 1 Springer pp 22–23, 414–419Google Scholar
  96. Niladevi KN, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24(7):1215–1222CrossRefGoogle Scholar
  97. Numanoğlu Y, Sungur S (2004) β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose–gelatin carrier system. Process Biochem 39(6):705–711CrossRefGoogle Scholar
  98. Nussinovitch A (1997) Hydrocolloid applications: gum technology in the food and other industries. Blackie Academic & Prof, London, p 251CrossRefGoogle Scholar
  99. Panesar PS, Marwaha SS, Chopra HK (2010) Enzymes in food processing: fundamentals and potential applications. I.K. Int p 122Google Scholar
  100. Park JM, Kim M, Park HS, Jang A, Min J, Kim YH (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43CrossRefPubMedGoogle Scholar
  101. Parmar A, Kumar H, Marwaha SS, Kennedy JF (2000) Advance in enzymatic transformation of penicillins to 6-amino penicillanic acid (6-APA). Biotechnol Adv 18(4):289–301CrossRefPubMedGoogle Scholar
  102. Pazarlioğlu NK, Sariişik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771CrossRefGoogle Scholar
  103. Prasertkittikul S, Chisti Y, Hansupalak N (2013) Deproteinization of natural rubber using protease immobilized on epichlorohydrin cross-linked chitosan beads. Ind Eng Chem Res 52(33):11723–11731CrossRefGoogle Scholar
  104. Pundir CS, Chauhan C (2012) Co-immobilization of detergent enzymes onto a plastic bucket and brush for their application in cloth washing. Ind Eng Chem Res 51(9):3556–3563CrossRefGoogle Scholar
  105. Quevedo R, Jaramillo M, Díaz O, Pedreschi F, Aguilera J (2009) Quantification of enzymatic browning in apple slices applying the fractal texture Fourier image. J Food Eng 95:285–290CrossRefGoogle Scholar
  106. Ramakrishna S, Ma Z, Matssura T (2011) Polymer Membranes in Biotechnology: preparation, functionalization and application. World Scientific pp 242Google Scholar
  107. Rao DG (2010) Introduction to biochemical engineering. Tata McGraw-Hill Education pp 76Google Scholar
  108. Ragunathan R, Swaminathan K (2004) Biological treatment of a pulp and paper industry effluent by Pleurotus spp. World J Microbiol Biotechnol 20(4):389–393CrossRefGoogle Scholar
  109. Reis RL, Román JS (2004) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press pp 359–367Google Scholar
  110. Rehman HU, Aman A, Silipo A, Qader SAU, Molinaro A, Ansari A (2013) Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem 139(1):1081–1086CrossRefPubMedGoogle Scholar
  111. Ross JRH (2011) Heterogeneous catalysis: fundamentals and applications. Elsevier pp 109Google Scholar
  112. Salleh AB, Abdul-Rahman RNZR, Basri M (2006) New lipases and proteases. Nova Publishers pp 114Google Scholar
  113. Shanmugam S, Sathishkumar T (2009) Enzyme technology. I. K. Int Pvt Ltd pp 110Google Scholar
  114. Sheldon RA (2007) Enzyme immobilisation: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307CrossRefGoogle Scholar
  115. Shiotani T, Yamané T (1981) A horizontal packed-bed bioreactor to reduce CO2 gas holdup in the continuous production of ethanol by immobilized yeast cells. Eur J Appl Microbiol Biotechnol 13(2):96–101CrossRefGoogle Scholar
  116. Singh AN, Singh S, Suthar N, Dubey VK (2011) Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J Agric Food Chem 59(11):6256–6262CrossRefPubMedGoogle Scholar
  117. Sio CF, Quax WJ (2004) Improved beta-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol 15:349–355CrossRefPubMedGoogle Scholar
  118. Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74(1):1–5CrossRefGoogle Scholar
  119. Sundaramoorthi C, Rajakumari R, Dharamsi VKA (2012) Production and immobilization of ʟ-asparaginase from marine source. Int J Pharm Pharm Sci 4:229–232Google Scholar
  120. Tampion J, Tampion MD (1987) Immobilized cells: principles and applications. Cambridge Univ Press pp 91Google Scholar
  121. Taylor RF, Schultz JS (1996) Handbook of chemical and biological sensors. CRC Press pp 209Google Scholar
  122. Torabizadeh H, Tavakoli M, Safari M (2014) Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J Mol Catal B Enzym 108:13–20CrossRefGoogle Scholar
  123. Torchilin VP (1987) Immobilised enzymes as drugs. Adv Drug Deliv Rev 1(1):41–86CrossRefGoogle Scholar
  124. Tóta D, Tóta A, Heinrich S, Mörl L (2010) In: Seiden-Morgenstern A (ed) Membrane reactors: distributing reactants to improve selectivity and yield. John Wiley & Sons pp 167Google Scholar
  125. Uhlig H (1998) Industrial enzymes and their applications. John Wiley & Sons pp 209–210Google Scholar
  126. Wang B, Cheng F, Lu Y, Ge W, Zhang M, Yue B (2013) Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: characterization and application in juice production. J Mol Catal B Enzym 97:137–143CrossRefGoogle Scholar
  127. Wang SG, Jiang X, Chen PC, Yu AG, Huang XJ (2012) Preparation of coaxial-electrospun poly [bis(p-methylphenoxy)] phosphazene nanofiber membrane for enzyme immobilization. Int J Mol Sci 13(11):14136–14148CrossRefPubMedCentralPubMedGoogle Scholar
  128. Wei H, Bing W, Xiaoye L, Chunyu L, Liran Y, Yongfeng L (2012) Fermentative hydrogen production from molasses in an activated sludge immobilized bioreactor. Int J Energy Eng 2(1):28–31CrossRefGoogle Scholar
  129. Wong KS, Fong WP, Tsang PWK (2011) Entrapment of a Trigonopsis variabilis d-amino acid oxidase variant F54Y for oxidative deamination of cephalosporin C. Eng Life Sci 11(5):491–495CrossRefGoogle Scholar
  130. Wu X, Chen C, Liu N, Yijun C (2011) Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanoate by recombinant diketoreductase in a biphasic system. Bioresour Technol 102(3):3649–3652CrossRefPubMedGoogle Scholar
  131. Wukasch RF (1994) Proceedings of the 49th industrial waste conference, Purdue University. CRC Press pp 520Google Scholar
  132. Yücel Y (2011) Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour Technol 102(4):3977–3980CrossRefPubMedGoogle Scholar
  133. Zaslavsky BY (1994) Aqueous two-phase partitioning. Marcel Dekker Inc, New York, 1994Google Scholar
  134. Zhai R, Zhang B, Wan Y, Li C, Wang J, Liu J (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309CrossRefGoogle Scholar
  135. Zhang B, Weng Y, Xu H, Mao Z (2012a) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93(1):61–70CrossRefPubMedGoogle Scholar
  136. Zhang BB, Cheng J, Lou WY, Wang P, Zong MH (2012b) Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microb Cell Factories 11(1):108CrossRefGoogle Scholar
  137. Zhao J, Wang Y, Luo G, Zhu S (2011) Immobilization of penicillin G acylase on macro-mesoporous silica spheres. Bioresour Technol 102(2):529–535CrossRefPubMedGoogle Scholar
  138. Zhou GX, Chen GY, Yan BB (2014) Biodiesel production in a magnetically-stabilized, fluidized bed reactor with an immobilized lipase in magnetic chitosan microspheres. Biotechnol Lett 36(1):63–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ismail Eş
    • 1
    • 2
  • José Daniel Gonçalves Vieira
    • 3
  • André Corrêa Amaral
    • 1
    • 2
    Email author
  1. 1.Laboratory of Nanotechnology and Biotechnology, Institute of Tropical Pathology and Public HealthFederal University of GoiásGoiâniaBrazil
  2. 2.Molecular Biology and Genetics Post Graduation Program, Institute of Biological ScienceFederal University of GoiásGoiâniaBrazil
  3. 3.Department of Microbiology, Institute of Tropical Pathology and Public HealthFederal University of GoiásGoiâniaBrazil

Personalised recommendations