Applied Microbiology and Biotechnology

, Volume 99, Issue 9, pp 3961–3969 | Cite as

Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids

  • Fontenete Silvia
  • Barros Joana
  • Madureira Pedro
  • Figueiredo Céu
  • Wengel Jesper
  • Azevedo Nuno FilipeEmail author
Applied genetics and molecular biotechnology


In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2′-O-methyl RNA (2′OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2′OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work.


FISH Oligonucleotides Nucleic acids Microbiology Mismatch discrimination 



This work was funded by the FEDER funds through the Operational Programme for Competitiveness Factors—COMPETE, ON.2-O Novo Norte-North Portugal Regional Operational Programme, and National Funds through FCT—Foundation for Science and Technology under the following projects: PEst-C/EQB/UI0511, NORTE-07-0124-FEDER-000025—RL2_Environment and Health, DNA mimics Research Project PIC/IC/82815/2007, PhD grant [SFRH/BD/72999/2010], and Nucleic Acid Center, University of Southern Denmark.

Conflict of interest

JW is a cofounder of RiboTask ApS which offers LNA/2′-OMe-RNA probes for RNA targeting. NFA is a cofounder of Biomode SA which develops molecular methods for the rapid detection of microorganisms.


  1. Almeida C, Azevedo NF, Bento JC, Cerca N, Ramos H, Vieira MJ, Keevil CW (2013) Rapid detection of urinary tract infections caused by Proteus spp. using PNA-FISH. Eur J Clin Microbiol Infect Dis 32(6):781–786CrossRefPubMedGoogle Scholar
  2. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925PubMedCentralPubMedGoogle Scholar
  3. Buchardt O, Egholm M, Berg RH, Nielsen PE (1993) Peptide nucleic acids and their potential applications in biotechnology. Trends Biotechnol 11(9):384–386CrossRefPubMedGoogle Scholar
  4. Campbell MA, Wengel J (2011) Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 40(12):5680–5689CrossRefPubMedGoogle Scholar
  5. Celeda D, Aldinger K, Haar FM, Hausmann M, Durm M, Ludwig H, Cremer C (1994) Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Cytometry 17(1):13–25CrossRefPubMedGoogle Scholar
  6. Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9(10):1944–1960CrossRefPubMedCentralPubMedGoogle Scholar
  7. Cerqueira L, Fernandes RM, Ferreira RM, Carneiro F, Dinis-Ribeiro M, Figueiredo C, Keevil CW, Azevedo NF, Vieira MJ (2011) PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol 11:101CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cerqueira L, Fernandes RM, Ferreira RM, Oleastro M, Carneiro F, Brandao C, Pimentel-Nunes P, Dinis-Ribeiro M, Figueiredo C, Keevil CW, Vieira MJ, Azevedo NF (2013) Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of Helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J Clin Microbiol 51(6):1887–1893CrossRefPubMedCentralPubMedGoogle Scholar
  9. Christensen U, Jacobsen N, Rajwanshi VK, Wengel J, Koch T (2001) Stopped-flow kinetics of locked nucleic acid (LNA)-oligonucleotide duplex formation: studies of LNA-DNA and DNA-DNA interactions. Biochem J 354(Pt 3):481–484CrossRefPubMedCentralPubMedGoogle Scholar
  10. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243(4896):1360–1363CrossRefPubMedGoogle Scholar
  11. Eaton KA, Dewhirst FE, Radin MJ, Fox JG, Paster BJ, Krakowka S, Morgan DR (1993) Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int J Syst Bacteriol 43(1):99–106CrossRefPubMedGoogle Scholar
  12. Filichev VV, Christensen UB, Pedersen EB, Babu BR, Wengel J (2004) Locked nucleic acids and intercalating nucleic acids in the design of easily denaturing nucleic acids: thermal stability studies. Chembiochem 5(12):1673–1679CrossRefPubMedGoogle Scholar
  13. Fontenete S, Guimaraes N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N (2013) Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 8(11):e81230CrossRefPubMedCentralPubMedGoogle Scholar
  14. Fontenete S., N. Guimarães., J. Wengel, N.F. Azevedo (in press). Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models. Crit Rev Biotechnol.Google Scholar
  15. Guga P, Koziolkiewicz M (2011) Phosphorothioate nucleotides and oligonucleotides—recent progress in synthesis and application. Chem Biodivers 8(9):1642–1681CrossRefPubMedGoogle Scholar
  16. Guimaraes N, Azevedo NF, Figueiredo C, Keevil CW, Vieira MJ (2007) Development and application of a novel peptide nucleic acid probe for the specific detection of Helicobacter pylori in gastric biopsy specimens. J Clin Microbiol 45(9):3089–3094CrossRefPubMedCentralPubMedGoogle Scholar
  17. Kaur H, Wengel J, Maiti S (2008) Thermodynamics of DNA-RNA heteroduplex formation: effects of locked nucleic acid nucleotides incorporated into the DNA strand. Biochemistry 47(4):1218–1227CrossRefPubMedGoogle Scholar
  18. Kempf VAJ, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2):830–838PubMedCentralPubMedGoogle Scholar
  19. Kierzek E, Ciesielska A, Pasternak K, Mathews DH, Turner DH, Kierzek R (2005) The influence of locked nucleic acid residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res 33(16):5082–5093CrossRefPubMedCentralPubMedGoogle Scholar
  20. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14):3607–3630CrossRefGoogle Scholar
  21. Krimmer V, Merkert H, von Eiff C, Frosch M, Eulert J, Lohr JF, Hacker J, Ziebuhr W (1999) Detection of Staphylococcus aureus and Staphylococcus epidermidis in clinical samples by 16S rRNA-directed in situ hybridization. J Clin Microbiol 37(8):2667–2673PubMedCentralPubMedGoogle Scholar
  22. Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72(8):5311–5317CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8(16):2219–2222CrossRefPubMedGoogle Scholar
  24. Langkjaer N, Pasternak A, Wengel J (2009) UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem 17(15):5420–5425CrossRefPubMedGoogle Scholar
  25. Majlessi M, Nelson NC, Becker MM (1998) Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res 26(9):2224–2229CrossRefPubMedCentralPubMedGoogle Scholar
  26. Marshall BRH, Annear DI, Goodwin CS, Pearman JW, Warren JR, Armstrong JA (1984) Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbiol Lett 25:83–88Google Scholar
  27. Matsumoto K, Nakata E, Tamura T, Saito I, Aizawa Y, Morii T (2013) A peptide nucleic acid (PNA) heteroduplex probe containing an inosine-cytosine base pair discriminates a single-nucleotide difference in RNA. Chemistry 19(16):5034–5040CrossRefPubMedGoogle Scholar
  28. Matthiesen SH, Hansen CM (2012) Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One 7(7):e40675CrossRefPubMedCentralPubMedGoogle Scholar
  29. Mishra S, Ghosh S, Mukhopadhyay R (2012) Ordered self-assembled locked nucleic acid (LNA) structures on gold(111) surface with enhanced single base mismatch recognition capability. Langmuir 28(9):4325–4333CrossRefPubMedGoogle Scholar
  30. Mishra S, Ghosh S, Mukhopadhyay R (2013) Maximizing mismatch discrimination by surface-tethered locked nucleic acid probes via ionic tuning. Anal Chem 85(3):1615–1623CrossRefPubMedGoogle Scholar
  31. Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6(3):833–843CrossRefPubMedGoogle Scholar
  32. Moreno Y, Ferrus MA, Alonso JL, Jimenez A, Hernandez J (2003) Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Res 37(9):2251–2256CrossRefPubMedGoogle Scholar
  33. Obika S, Nanbu D, Hari Y, Morio K-I, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, −endo sugar puckering. Tetrahedron Lett 38(50):8735–8738CrossRefGoogle Scholar
  34. Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43(12):3537–3554CrossRefPubMedGoogle Scholar
  35. Owczarzy R, You Y, Groth CL, Tataurov AV (2011) Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry 50(43):9352–9367CrossRefPubMedCentralPubMedGoogle Scholar
  36. Pasternak A, Wengel J (2010) Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides. Nucleic Acids Res 38(19):6697–6706CrossRefPubMedCentralPubMedGoogle Scholar
  37. Pasternak A, Wengel J (2011) Unlocked nucleic acid—an RNA modification with broad potential. Org Biomol Chem 9(10):3591–3597CrossRefPubMedGoogle Scholar
  38. Perlikova P, Karlsen KK, Pedersen EB, Wengel J (2014) Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability. Chembiochem 15(1):146–156CrossRefPubMedGoogle Scholar
  39. Politz JC, Browne ES, Wolf DE, Pederson T (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A 95(11):6043–6048CrossRefPubMedCentralPubMedGoogle Scholar
  40. Sadhu C, Dutta S, Gopinathan KP (1984) Influence of formamide on the thermal-stability of DNA. J Biosci 6(6):817–821CrossRefGoogle Scholar
  41. SantaLucia J Jr, Allawi HT, Seneviratne PA (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35(11):3555–3562CrossRefPubMedGoogle Scholar
  42. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65(3):1280–1288PubMedCentralPubMedGoogle Scholar
  43. Stender H, Fiandaca M, Hyldig-Nielsen JJ, Coull J (2002) PNA for rapid microbiology. J Microbiol Methods 48(1):1–17CrossRefPubMedGoogle Scholar
  44. Tavares A, Inacio J, Melo-Cristino J, Couto I (2008) Use of fluorescence in situ hybridization for rapid identification of staphylococci in blood culture samples collected in a Portuguese hospital. J Clin Microbiol 46(9):3097–3100CrossRefPubMedCentralPubMedGoogle Scholar
  45. Yan Y, Yan J, Piao X, Zhang T, Guan Y (2012) Effect of LNA- and OMeN-modified oligonucleotide probes on the stability and discrimination of mismatched base pairs of duplexes. J Biosci 37(2):233–241CrossRefPubMedGoogle Scholar
  46. Yilmaz LS, Noguera DR (2007) Development of thermodynamic models for simulating probe dissociation profiles in fluorescence in situ hybridization. Biotechnol Bioeng 96(2):349–363CrossRefPubMedGoogle Scholar
  47. Yilmaz LS, Okten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72(1):733–744CrossRefPubMedCentralPubMedGoogle Scholar
  48. You Y, Moreira BG, Behlke MA, Owczarzy R (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34(8):e60CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fontenete Silvia
    • 1
    • 2
    • 3
    • 4
  • Barros Joana
    • 1
    • 5
  • Madureira Pedro
    • 4
    • 6
  • Figueiredo Céu
    • 2
    • 7
  • Wengel Jesper
    • 3
  • Azevedo Nuno Filipe
    • 1
    Email author
  1. 1.LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.IPATIMUP, Institute of Molecular Pathology and Immunology of the University of PortoPortoPortugal
  3. 3.Nucleic Acid Center, Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdense MDenmark
  4. 4.ICBAS, Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
  5. 5.INEB, Instituto de Engenharia BiomédicaPortoPortugal
  6. 6.IBMC, Institute for Molecular Biology and Cell BiologyPortoPortugal
  7. 7.FMUP, Faculty of Medicine of Porto UniversityPortoPortugal

Personalised recommendations