Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma

Abstract

Truffles are symbiotic fungi in high demand for the aroma of their fruiting bodies which are colonized by a diverse microbial flora. Specific sulfur containing volatiles (thiophene derivatives) characteristic of the white truffle Tuber borchii were recently shown to be derived from the bacterial community inhabiting truffle fruiting bodies. Our aim here was to investigate whether thiophene derivatives contributed to the human-sensed aroma of T. borchii. Furthermore, we questioned whether the concentration of thiophene volatiles was affected by freezing or whether it differed in truffles from distinct geographical origins. Gas chromatography–olfactometry (GC-O) analysis revealed that thiophene derivatives were major contributors to the aroma of T. borchii. Of four thiophene derivatives detected in this study, 3-methyl-4,5-dihydrothiophene was the most important one in terms of its contribution to the overall aroma. The relative concentration of thiophene derivatives was unaffected by freezing; however, it differed in samples collected in distinct geographical locations (Italy versus New Zealand). The causes of this variability might be differences in storage conditions and/or in bacterial community composition of the fruiting bodies; however, further work is needed to confirm these hypotheses. Overall, our results demonstrate that thiophene derivatives are major contributors to the human-sensed aroma of T. borchii.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2013) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles: Tuber melanosporum-associated bacterial communities. Environ Microbiol 16:2831–47. doi:10.1111/1462-2920.12294

    Article  PubMed  Google Scholar 

  2. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35. doi:10.1016/j.femsle.2005.04.027

    CAS  Article  PubMed  Google Scholar 

  3. Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246. doi:10.1111/j.1462-2920.2007.01338.x

    Article  PubMed  Google Scholar 

  4. Barbieri E, Ceccaroli P, Saltarelli R, Guidi C, Potenza L, Basaglia M, Fontana F, Baldan E, Casella S, Ryahi O, Zambonelli A, Stocchi V (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 114:936–942. doi:10.1016/j.funbio.2010.09.001

    CAS  Article  PubMed  Google Scholar 

  5. Bellesia F, Pinetti A, Bianchi A, Tirillini B (1996) Volatile compounds of the white truffle Tuber magnatum Pico from middle Italy. Flavour Frag J 11:239–243. doi:10.1002/(SICI)1099-1026(199607)11:4<239::AID-FFJ573>3.0.CO;2-A

    CAS  Article  Google Scholar 

  6. Bellesia F, Pinetti A, Tirillini B, Bianchi A (2001) Temperature-dependent evolution of volatile organic compounds in Tuber borchii from Italy. Flavour Frag J 16:1–6. doi:10.1002/1099-1026(200101/02)16:1<1::AID-FFJ936>3.0.CO;2-Y

    CAS  Article  Google Scholar 

  7. Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008. doi:10.1111/j.1365-294X.2010.04855.x

    CAS  Article  PubMed  Google Scholar 

  8. Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193. doi:10.1007/s00203-005-0043-y

    CAS  Article  PubMed  Google Scholar 

  9. Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry. Food Chem 122:300–306. doi:10.1016/j.foodchem.2010.02.024

    Article  Google Scholar 

  10. Culleré L, Ferreira V, Venturini ME, Marco P, Blanco D (2013) Chemical and sensory effects of the freezing process on the aroma profile of black truffles (Tuber melanosporum). Food Chem 136:518–525. doi:10.1016/j.foodchem.2012.08.030

    Article  PubMed  Google Scholar 

  11. Dravnieks A (1985) Atlas of odor character profiles. Astm Intl, Philadelphia, USA

    Google Scholar 

  12. Fiecchi A, Kienle MG, Scala A, Cabella P (1967) Bis-methylthiomethane, an odorous substance from white truffle, Tuber magnatum Pico. Tetrahedron Lett 8:1681–1682. doi:10.1016/S0040-4039(00)90698-1

    Article  Google Scholar 

  13. Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, Barbieri E, Giomaro G, Stocchi V (2008) Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun Mass Spectrom 22:3147–3153. doi:10.1002/rcm.3714

    CAS  Article  PubMed  Google Scholar 

  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  Article  PubMed  Google Scholar 

  15. Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models, and omission. Chem Senses 26:533–545

    CAS  Article  PubMed  Google Scholar 

  16. Johnson AJ, Hirson GD, Ebeler SE (2012) Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry. PLoS ONE 7:e42693. doi:10.1371/journal.pone.0042693

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Liu R-S, Li D-C, Li H-M, Tang Y-J (2012) Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatography-olfactometry in combination with aroma reconstitution and omission test. Appl Microbiol Biotechnol 94:353–363. doi:10.1007/s00253-011-3837-7

    CAS  Article  PubMed  Google Scholar 

  18. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi:10.1038/nature08867

    CAS  Article  PubMed  Google Scholar 

  19. Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    CAS  Article  PubMed  Google Scholar 

  20. Ouyang G, Pawliszyn J (2008) A critical review in calibration methods for solid-phase microextraction. Anal Chim Acta 627:184–197

    CAS  Article  PubMed  Google Scholar 

  21. Pacioni G, Leonardi M, Aimola P, Ragnelli AM, Rubini A, Paolocci F (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 111:1450–1460. doi:10.1016/j.mycres.2007.08.016

    CAS  Article  PubMed  Google Scholar 

  22. Pawliszyn J (2000) Theory of solid-phase microextraction. J Chromatogr Sci 38:270–278

    CAS  Article  PubMed  Google Scholar 

  23. Schieberle P, Grosch W (1987) Evaluation of the flavour of wheat and rye bread crusts by aroma extract dilution analysis. Z Lebensm Unters Forsch 185:111–113. doi:10.1007/BF01850088

    CAS  Article  Google Scholar 

  24. Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    CAS  Article  PubMed  Google Scholar 

  25. Splivallo R, Maier C (2011) Production of natural truffle flavours from truffle mycelium (in French). Patent publication nb PCT/IB2010/052913

  26. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi:10.1111/j.1469-8137.2010.03523.x

    CAS  Article  PubMed  Google Scholar 

  27. Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt J-P, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194:823–835. doi:10.1111/j.1469-8137.2012.04077.x

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P (2014) Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. doi:10.1111/1462-2920.12521

    PubMed  Google Scholar 

  29. Talou T, Delmas M, Gaset A (1989) Black Perigord truffle: from aroma analysis to aromatizer formulation. In: Charalambous G (ed) Flavors and off-flavors ’89: Proceedings of the 6th International Flavor Conference, Rethymnon, Crete, Greece, 5–7 July 1989. Elsevier, Amsterdam, The Netherlands, pp 715–728

    Google Scholar 

  30. Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulphide: the secret for black truffle hunting by animals? Mycol Res 94:277–278. doi:10.1016/S0953-7562(09)80630-8

    CAS  Article  Google Scholar 

  31. Ullrich F, Grosch W (1987) Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z Lebensm Unters Forsch 184:277–282. doi:10.1007/BF01027663

    CAS  Article  Google Scholar 

  32. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic, San Diego, CA, pp 315–322

    Google Scholar 

  33. Zhang Y, Fraatz MA, Horlamus F, Quitmann H, Zorn H (2014) Identification of potent odorants in a novel nonalcoholic beverage produced by fermentation of wort with shiitake (Lentinula edodes). J Agric Food Chem 62:4195–4203

    CAS  Article  PubMed  Google Scholar 

  34. Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:199–205. doi:10.1002/rcm.1313

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carolyn Doyle for technical support with the GC-O-MS and the sensory judges who took part in this study.

Funding

Financial support was provided through a grant from the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG), grant number 1191/4-1, and by the LOEWE research funding program of the government of Hessen, in the framework of the Integrative Fungal Research Cluster (IPF).

Ethics statement

Use of human subjects for this study was reviewed by the University of California Davis Institutional Review Board and was granted exempt status (Category 6).

Conflict of interest

RS declares that a patent has been filed regarding the production of truffle aroma using truffle-associated microbes (Splivallo and Maier 2011). The other author(s) declare that they have no competing interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Splivallo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Splivallo, R., Ebeler, S.E. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl Microbiol Biotechnol 99, 2583–2592 (2015). https://doi.org/10.1007/s00253-014-6360-9

Download citation

Keywords

  • Truffles
  • Tuber borchii
  • Thiophene derivatives
  • Aroma-active compounds
  • Volatiles
  • Sensory analysis