Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 7, pp 3093–3102 | Cite as

Probing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein

  • Mary Abou-Nader Crum
  • Jason M. Park
  • Andani E. Mulelu
  • B. Trevor Sewell
  • Michael J. Benedik
Applied genetics and molecular biotechnology

Abstract

The cyanide dihydratases from Bacillus pumilus and Pseudomonas stutzeri share high amino acid sequence similarity throughout except for their highly divergent C-termini. However, deletion or exchange of the C-termini had different effects upon each enzyme. Here we extended previous studies and investigated how the C-terminus affects the activity and stability of three nitrilases, the cyanide dihydratases from B. pumilus (CynDpum) and P. stutzeri (CynDstut) and the cyanide hydratase from Neurospora crassa. Enzymes in which the C-terminal residues were deleted decreased in both activity and thermostability with increasing deletion lengths. However, CynDstut was more sensitive to such truncation than the other two enzymes. A domain of the P. stutzeri CynDstut C-terminus not found in the other enzymes, 306GERDST311, was shown to be necessary for functionality and explains the inactivity of the previously described CynDstut-pum hybrid. This suggests that the B. pumilus C-terminus, which lacks this motif, may have specific interactions elsewhere in the protein, preventing it from acting in trans on a heterologous CynD protein. We identify the dimerization interface A-surface region 195–206 (A2) from CynDpum as this interaction site. However, this A2 region did not rescue activity in C-terminally truncated CynDstutΔ302 or enhance the activity of full-length CynDstut and therefore does not act as a general stability motif.

Keywords

Cyanide dihydratase Nitrilase Cyanide Bioremediation 

Notes

Acknowledgments

The financial supports of The Welch Foundation (A1310) and the Texas Hazardous Waste Research Center are gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2014_6335_MOESM1_ESM.pdf (166 kb)
ESM 1 (PDF 166 kb)

References

  1. Agarkar VB, Kimani SW, Cowan DA, Sayed MF, Sewell BT (2006) The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing. Acta Crystallogr Sect F: Struct Biol Cryst Commun 62(Pt 12):1174–1178. doi: 10.1107/S1744309106043855 CrossRefGoogle Scholar
  2. Andrade J, Karmali A, Carrondo MA, Frazao C (2007a) Crystallization, diffraction data collection and preliminary crystallographic analysis of hexagonal crystals of Pseudomonas aeruginosa amidase. Acta Crystallogr Sect F: Struct Biol Cryst Commun 63(Pt 3):214–216. doi: 10.1107/S1744309107005830 CrossRefGoogle Scholar
  3. Andrade J, Karmali A, Carrondo MA, Frazao C (2007b) Structure of amidase from Pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state. J Biol Chem 282(27):19598–19605. doi: 10.1074/jbc.M701039200 CrossRefPubMedGoogle Scholar
  4. Basile LJ, Willson RC, Sewell BT, Benedik MJ (2008) Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol 80(3):427–435. doi: 10.1007/s00253-008-1559-2 CrossRefPubMedGoogle Scholar
  5. Dent KC, Weber BW, Benedik MJ, Sewell BT (2009) The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Appl Microbiol Biotechnol 82(2):271–278. doi: 10.1007/s00253-008-1735-4 CrossRefPubMedGoogle Scholar
  6. Hung CL, Liu JH, Chiu WC, Huang SW, Hwang JK, Wang WC (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine–glutamate–lysine catalytic triad. J Biol Chem 282(16):12220–12229. doi: 10.1074/jbc.M609134200
  7. Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ (2003) CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl Environ Microbiol 69(8):4794–4805CrossRefPubMedCentralPubMedGoogle Scholar
  8. Jandhyala DM, Willson RC, Sewell BT, Benedik MJ (2005) Comparison of cyanide-degrading nitrilases. Appl Microbiol Biotechnol 68(3):327–335. doi: 10.1007/s00253-005-1903-8 CrossRefPubMedGoogle Scholar
  9. Kimani SW, Agarkar VB, Cowan DA, Sayed MF, Sewell BT (2007) Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallogr D Biol Crystallogr 63(Pt 10):1048–1058. doi: 10.1107/S090744490703836X CrossRefPubMedGoogle Scholar
  10. Kiziak C, Klein J, Stolz A (2007) Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Eng Des Sel 20(8):385–396. doi: 10.1093/Protein/Gzm032 CrossRefPubMedGoogle Scholar
  11. Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S (2003) Crystal structure of a putative CN hydrolase from yeast. Proteins Struct Funct Genet 52(2):283–291. doi: 10.1002/Prot.10417 CrossRefPubMedGoogle Scholar
  12. Lundgren S, Lohkamp B, Andersen B, Piskur J, Dobritzsch D (2008) The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly. J Mol Biol 377(5):1544–1559. doi: 10.1016/j.jmb.2008.02.011 CrossRefPubMedGoogle Scholar
  13. Meyers PR, Rawlings DE, Woods DR, Lindsey GG (1993) Isolation and characterization of a cyanide dihydratase from Bacillus pumilus C1. J Bacteriol 175(19):6105–6112PubMedCentralPubMedGoogle Scholar
  14. Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem 267(1):138–144CrossRefPubMedGoogle Scholar
  15. Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T (2000) Crystal structure of N-carbamyl-d-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Struct Fold Des 8(7):729–737. doi: 10.1016/S0969-2126(00)00160-X CrossRefGoogle Scholar
  16. Nichols M, Willits C (1934) Reactions of Nessler's solution. J Am Chem Soc 56:769–774CrossRefGoogle Scholar
  17. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2(1):REVIEWS0001CrossRefPubMedCentralPubMedGoogle Scholar
  18. Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce CM, Brenner C (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10(15):907–917. doi: 10.1016/S0960-9822(00)00621-7 CrossRefPubMedGoogle Scholar
  19. Park J (2014) Regions involved in the oligomerization and activity of the spiral forming nitrilase Cyanide Dihydratase. Ph.D. Dissertation, Texas A&M University, USAGoogle Scholar
  20. Rinagelova A, Kaplan O, Vesela AB, Chmatal M, Krenkova A, Plihal O, Pasquarelli F, Cantarella M, Martinkova L (2014) Cyanide hydratase from Aspergillus niger K10: overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Process Biochem 49(3):445–450. doi: 10.1016/J.Procbio.2013.12.008 CrossRefGoogle Scholar
  21. Sewell BT, Berman MN, Meyers PR, Jandhyala D, Benedik MJ (2003) The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11(11):1413–1422CrossRefPubMedGoogle Scholar
  22. Sewell BT, Thuku RN, Zhang X, Benedik MJ (2005) Oligomeric structure of nitrilases: effect of mutating interfacial residues on activity. Ann N Y Acad Sci 1056:153–159CrossRefPubMedGoogle Scholar
  23. Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15(3):283–302PubMedGoogle Scholar
  24. Thimann KV, Mahadevan S (1964) Nitrilase. I. Occurrence preparation + general properties of enzyme. Arch Biochem Biophys 105(1):133. doi: 10.1016/0003-9861(64)90244-9 CrossRefPubMedGoogle Scholar
  25. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106(3):703–727. doi: 10.1111/j.1365-2672.2008.03941.x CrossRefPubMedGoogle Scholar
  26. Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274(8):2099–2108. doi: 10.1111/j.1742-4658.2007.05752.x CrossRefPubMedGoogle Scholar
  27. Wang L, Watermeyer JM, Mulelu AE, Sewell BT, Benedik MJ (2012) Engineering pH-tolerant mutants of a cyanide dihydratase. Appl Microbiol Biotechnol 94(1):131–140. doi: 10.1007/s00253-011-3620-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mary Abou-Nader Crum
    • 1
  • Jason M. Park
    • 1
  • Andani E. Mulelu
    • 2
  • B. Trevor Sewell
    • 2
  • Michael J. Benedik
    • 1
  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA
  2. 2.Structural Biology Research Unit, Division of Medical Biochemistry, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa

Personalised recommendations