Applied Microbiology and Biotechnology

, Volume 99, Issue 12, pp 5109–5121 | Cite as

Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1

  • C. Valverde-TercedorEmail author
  • M. Montalbán-López
  • T. Perez-Gonzalez
  • M. S. Sanchez-Quesada
  • T. Prozorov
  • E. Pineda-Molina
  • M. A. Fernandez-Vivas
  • A. B. Rodriguez-Navarro
  • D. Trubitsyn
  • Dennis A. Bazylinski
  • C. Jimenez-LopezEmail author
Biotechnologically relevant enzymes and proteins


Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.


Biomimetics Biomineralization MamC Magnetite nanoparticles Magnetosomes Magnetococcus marinus strain MC-1 Magnetotactic bacteria 



Financial funding for this work was provided by grants CGL2010-18274 and CGL2013-46612 from the Spanish Ministry of Culture (MEC). We thank Dr. Angel Delgado Mora (Universidad de Granada) for the Z-size analyses and Rafael López Moreno for the assistance in the experiments. We thank the Centro de Instrumentación Científica personnel from the University of Granada for the TEM analyses and technical assistance and to the personnel from La Factoría (Granada) and LAC (IACT, CSIC-UGR) for their help in protein expression and purification. T. Prozorov acknowledges support from the Department of Energy Office of Science Early Career Research Award. Magnetization measurements and part of the electron microscopy analysis were carried out at the Ames Laboratory (US DOE, Iowa State University), contract no. DE-AC02-07CH11358. D.A.B... is supported by US NSF Grant EAR-1423939 and by SC-12-384 (US DOE C02-07CH11358, Ames Laboratory at Iowa State University). Finally, we also thank C.S. Romanek and three anonymous reviewers for their comments and suggestions that have greatly improved this manuscript.

Supplementary material

253_2014_6326_MOESM1_ESM.pdf (733 kb)
ESM 1 (PDF 733 kb)


  1. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed 31:153–169CrossRefGoogle Scholar
  2. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389CrossRefPubMedGoogle Scholar
  3. Arai T, Norde W (1990) The behavior of some model proteins at solid–liquid interfaces 2. Sequential and competitive adsorption. Colloids Surf 51:17–28CrossRefGoogle Scholar
  4. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750CrossRefPubMedGoogle Scholar
  5. Arakaki A, Masuda F, Amemiya Y, Tanaka T, Matsunaga T (2010) Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J Colloid Interf Sci 343(1):65–70CrossRefGoogle Scholar
  6. Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401CrossRefPubMedGoogle Scholar
  7. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230CrossRefPubMedGoogle Scholar
  8. Bruno J, Wersin P, Stumm W (1992) On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3 (s) at 25 °C and 1 atm total pressure. Geochim Cosmochim Acta 56:1149–1155CrossRefGoogle Scholar
  9. Chen, Drysdale (1993) Detection of iron binding proteins by a blotting technique. Anal Biochem 212:47–49CrossRefPubMedGoogle Scholar
  10. Flade K, Lau C, Mertig M, Pompe W (2001) Osteocalcin-controlled dissolution–reprecipitation of calcium phosphate under biomimetic conditions. Chem Mater 13:3596–3602CrossRefGoogle Scholar
  11. Garrels RM, Christ CL (1990) Solutions, minerals and equilibria. In: Jones and Bartlett, 2nd edn. Boston, MA, pp 450Google Scholar
  12. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, New Jersey, pp 571–607CrossRefGoogle Scholar
  13. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582CrossRefPubMedCentralPubMedGoogle Scholar
  14. Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050CrossRefPubMedCentralPubMedGoogle Scholar
  15. Haynes AC, Norde WJ (1994) Interfacial behaviour of biomacromolecules. J Colloid Interf Sci 164:394–409CrossRefGoogle Scholar
  16. Hattan SJ, Laue TM, Chasteen ND (2001) Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc Mytilus edulis. J Biol Chem 276:4461–4468CrossRefPubMedGoogle Scholar
  17. Kashyap S, Woehl TJ, Valverde-Tercedor C, Sanchez-Quesada MS, Jimenez-Lopez C, Prozorov T (2014) Iron-binding micelles in acidic recombinant biomineralization protein, MamC. J Nano Mat 320124Google Scholar
  18. Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Posfai M, Tompa E, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D (2014) Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9:193–197CrossRefPubMedGoogle Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  20. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA, pp 43–46Google Scholar
  21. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  22. Mann S, Frankel RB (1989) Magnetite biomineralization in unicellular organisms. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH, New York, pp 157–182Google Scholar
  23. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2007) Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal Biochem 366:102–104CrossRefPubMedGoogle Scholar
  24. Martín Ramos JD (2004) XPowder, a software package for powder X-ray diffraction analysis. Legal Deposit GR 1001/04Google Scholar
  25. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166CrossRefPubMedGoogle Scholar
  26. Nudelman H, Zarivach R (2014) Structure prediction of magnetosome-associated proteins. Front Microbiol 5:9CrossRefPubMedCentralPubMedGoogle Scholar
  27. Perez-Gonzalez T, Rodriguez-Navarro A, Jimenez-Lopez C (2011) Inorganic magnetite precipitation at 25 °C: a low-cost inorganic coprecipitation method. J Supercond Nov Magn 24(1–2):549–557CrossRefGoogle Scholar
  28. Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957CrossRefGoogle Scholar
  29. Prozorov T, Bazylinski DA, Mallapragada SK, Prozorov R (2013) Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater Sci Eng R 74:133–172CrossRefGoogle Scholar
  30. Raj PA, Johnsson M, Levine MJ, Nancollas GH (1992) Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem 267:5968–5976PubMedGoogle Scholar
  31. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRefPubMedGoogle Scholar
  32. Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190:377–386CrossRefPubMedCentralPubMedGoogle Scholar
  33. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852CrossRefPubMedCentralPubMedGoogle Scholar
  34. Sweeton FH, Baes JCF (1970) The solubility of magnetite and hydrolysis of ferrous ion in aqueous solutions at elevated temperatures. J Chem Thermodyn 2(4):479–500CrossRefGoogle Scholar
  35. Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234–5247CrossRefPubMedGoogle Scholar
  36. Thomas LA, Dekker L, Kallumadil M, Southern P, Wilson M, Nair SP, Pankhurst QA, Parkin IP (2009) Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem 19:6529–6535CrossRefGoogle Scholar
  37. Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson JEK, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081CrossRefPubMedGoogle Scholar
  38. Valverde-Tercedor C, Abadía-Molina F, Martinez-Bueno M, Pineda-Molina E, Chen L, Oestreicher Z, Lower BH, Lower S, Bazylinski DA, Jimenez-Lopez C (2014) Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy. Arch Microbiol 196:481–488CrossRefPubMedGoogle Scholar
  39. Wang L, Prozorov T, Palo PE, Liu X, Vaknin D, Prozorov R (2012) Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromol 13:98–105CrossRefGoogle Scholar
  40. Wolff A, Frese K, Wissbrock M, Eckstaedt K, Ennen I, Hetaba W, Loeffler S, Regtmeier A, Thomas P, Sewald N, Schattschneider P, Huetten A (2012) Influence of the synthetic polypeptide c25-mms6 on cobalt ferrite nanoparticle formation. J Nanopart Res 14:1161/1CrossRefGoogle Scholar
  41. Wolff A, Mill N, Eckstadt K, Ennen I, Hutten A, Hetaba W, Wissbrock M, Sewald N, Loffler S, Dreyer A, Schattschneider P (2014) Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein J Nanotechnol 5:210CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Valverde-Tercedor
    • 1
    • 6
    Email author
  • M. Montalbán-López
    • 1
    • 7
  • T. Perez-Gonzalez
    • 1
  • M. S. Sanchez-Quesada
    • 1
  • T. Prozorov
    • 2
  • E. Pineda-Molina
    • 3
  • M. A. Fernandez-Vivas
    • 1
  • A. B. Rodriguez-Navarro
    • 4
  • D. Trubitsyn
    • 5
    • 8
  • Dennis A. Bazylinski
    • 5
  • C. Jimenez-Lopez
    • 1
    Email author
  1. 1.Departamento de MicrobiologiaUniversidad de GranadaGranadaSpain
  2. 2.US DOE Ames LaboratoryAmesUSA
  3. 3.Laboratorio de Estudios Cristalográficos, IACTCSICGranadaSpain
  4. 4.Departamento de Mineralogía y PetrologíaUniversidad de GranadaGranadaSpain
  5. 5.School of Life SciencesUniversity of Nevada at Las VegasLas VegasUSA
  6. 6.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  7. 7.Department of Molecular GeneticsUniversity of GroningenGroningenNetherlands
  8. 8.Department of Biological SciencesSouthwestern Oklahoma State UniversityWeatherfordUSA

Personalised recommendations