Abstract
Knowledge of tolerance of bacteria to toxic stress is important, especially for processes targeted at high final titers of product. Information on environmental limits and stress responses may help during selection of strains or design and control of processes. The influence of the main product and its co-products on the process of 1,3-propanediol (PD) synthesis was determined. Adaptation to toxic compounds was noticed as Clostridium butyricum DSP1 was less sensitive to the addition of these factors during its exponential growth on glycerol than when the factor was present in the medium before inoculation. It was also shown that the response of the tested strain to the toxicity of 1,3-propanediol (1,3-PD) has different proteomic profiles depending on the stage of culture when this substance is introduced. Relatively satisfactory activity of the analyzed strain was sustained up to a concentration of 1,3-PD of 40 g/L while 80 g/L of this metabolite was lethal to the bacterium. As for the by-products, acetic acid was determined to be the most toxic among the acids excreted during the process.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abbad-Andaloussi S, Manginot-Durr CL, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-PD and altered production of acids. Appl Environ Microbiol 61:4413–4417
Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Proc 87:179–186. doi:10.1016/j.fbp.2009.03.008
Bahl H, Dürre P (2001) Clostridia Biotechnology and Medical Applications. Wiley-Vch Verlag. GmbH, IS BNs: 3-527-30175-5 (Hardback)
Bahl H, Müller H, Behrens S, Joseph H, Narberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341–348
Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701–705. doi:10.1007/BF00169880
Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597. doi:10.1007/BF00183234
Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Chatzifragkou A, Aggelis G, Gardeli C, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2012) Adaptation dynamics of Clostridium butyricum in high 1,3-propanediol content media. Appl Microbiol Biotechnol 95:1541–1552. doi:10.1007/s00253-012-4003-6
Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201–205. doi:10.1007/s002530000365
Colin T, Bories A, Lavigne C, Moulin G (2001) Effect of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43:238–243. doi:10.1007/s002840010294
Dietz D, Zeng AP (2014) Efficient production of 1, 3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37:225–233. doi:10.1007/s00449-013-0989-0
Dürre P, Hollergschwandner C (2004) Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:69–74. doi:10.1016/j.anaerobe.2003.11.001
Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384. doi:10.1016/j.lfs.2009.12.015
Jain MK, Glesson J, Upreti GG (1978) Intrinsic perturbing ability of alkanols in lipid bilayers. Biochim Biophys Acta 509:1–8
Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118. doi:10.1016/j.biortech.2013.05.040
Linden JC, Moreira A (1983) Anaerobic production of chemicals. In: Hollaender A et al (eds) Basic Biology of New Developments in Biotechnology, Basic Life Sciences. Plenum, New York, pp 377–403
Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061. doi:10.1021/pr9012078
Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas GJE, Zeng AP, Papanikolaou S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12:57–68. doi:10.1002/elsc.201100058
Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331. doi:10.1016/j.ymben.2010.03.004
Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71. doi:10.1002/lite.200900017
Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208. doi:10.1016/S0168-1656(99)00217-5
Petitdemange E, Durr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 5:498–502. doi:10.1007/BF01570021
Reimann A, Biebl H, Deckwer WD (1998) Production of 1,3-propanediol in by Clostridium butyricum in continuous culture with cell recycling. Appl Biochem Microbiol 49:359–363. doi:10.1007/s002530051182
Ringel AK, Wilkens E, Hortig D, Willke T, Vorlop KD (2012) An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Appl Microbiol Biotechnol 93:1049–1056. doi:10.1007/s00253-011-3594-7
Shimizu T, Katsura T (1988) Steady-state kinetic study o the inhibition of the adenosinetriphosphatase activity of dynein from Tetrahymena cilia by glycerol. J Biochem 103:99–105
Sullivan L, Benett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATTC 824 and Spo0A strain variants. J Ind Biotechnol 33:298–308. doi:10.1007/s10295
Szymanowska-Powałowska D, Białas W (2014) Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol 14:45. doi:10.1186/1471-2180-14-45
Szymanowska-Powałowska D, Drożdżyńska A, Remszel N (2013a) Isolation of new strains of bacteria able to synthesize 1,3-propanediol from glycerol. Adv Microbiol 3:171–180. doi:10.4236/aim.2013.32027
Szymanowska-Powałowska D, Piątkowska J, Leja K (2013b) Microbial Purification of Postfermentation Medium after 1,3-PD Production from Raw Glycerol. Biomed Res Int 2013:949107. doi:10.1155/2013/949107
Szymanowska-Powałowska D, Leja K (2014) An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electron J Biotechnol 17:72–78. doi:10.1016/j.ejbt.2013.12.010
Taylor M, Ramound JB, Tuffin M, Burton S, Eley K, Cowan (2012) Mechanisms and Applications of Microbial Solvent. In: Liu ZL (ed) Tolerance Microbial Stress Tolerance for Biofuels: Systems Biology. Springer-Verlag, Berlin Heidelberg, pp 178–199
Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv 29:442–452. doi:10.1016/j.biotechadv.2011.04.002
Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2013) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATTC 6013. Appl Microbiol Biotechnol 93:1325–1335. doi:10.1007/s00253-011-3766-5
Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063. doi:10.1007/s00253-011-3595-6
Zeng AP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Eng 14:169–175. doi:10.1007/BF01464731
Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng/Biotechnol 74:239–259. doi:10.1007/3-540-45736-4_11
Acknowledgments
The work was prepared within the framework of the project PO IG 01.01.02-00-074/09, co-funded by the European Union from The European Regional Development fund within the framework of the Innovative Economy Operational Programme 2007–2013.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Szymanowska-Powałowska, D., Kubiak, P. Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1. Appl Microbiol Biotechnol 99, 3179–3189 (2015). https://doi.org/10.1007/s00253-014-6292-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-6292-4


