Skip to main content
Log in

Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Knowledge of tolerance of bacteria to toxic stress is important, especially for processes targeted at high final titers of product. Information on environmental limits and stress responses may help during selection of strains or design and control of processes. The influence of the main product and its co-products on the process of 1,3-propanediol (PD) synthesis was determined. Adaptation to toxic compounds was noticed as Clostridium butyricum DSP1 was less sensitive to the addition of these factors during its exponential growth on glycerol than when the factor was present in the medium before inoculation. It was also shown that the response of the tested strain to the toxicity of 1,3-propanediol (1,3-PD) has different proteomic profiles depending on the stage of culture when this substance is introduced. Relatively satisfactory activity of the analyzed strain was sustained up to a concentration of 1,3-PD of 40 g/L while 80 g/L of this metabolite was lethal to the bacterium. As for the by-products, acetic acid was determined to be the most toxic among the acids excreted during the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbad-Andaloussi S, Manginot-Durr CL, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-PD and altered production of acids. Appl Environ Microbiol 61:4413–4417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Proc 87:179–186. doi:10.1016/j.fbp.2009.03.008

    Article  CAS  Google Scholar 

  • Bahl H, Dürre P (2001) Clostridia Biotechnology and Medical Applications. Wiley-Vch Verlag. GmbH, IS BNs: 3-527-30175-5 (Hardback)

  • Bahl H, Müller H, Behrens S, Joseph H, Narberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341–348

    Article  CAS  PubMed  Google Scholar 

  • Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701–705. doi:10.1007/BF00169880

    CAS  Google Scholar 

  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597. doi:10.1007/BF00183234

    CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Aggelis G, Gardeli C, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2012) Adaptation dynamics of Clostridium butyricum in high 1,3-propanediol content media. Appl Microbiol Biotechnol 95:1541–1552. doi:10.1007/s00253-012-4003-6

    Article  CAS  PubMed  Google Scholar 

  • Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201–205. doi:10.1007/s002530000365

    Article  CAS  PubMed  Google Scholar 

  • Colin T, Bories A, Lavigne C, Moulin G (2001) Effect of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43:238–243. doi:10.1007/s002840010294

    Article  CAS  PubMed  Google Scholar 

  • Dietz D, Zeng AP (2014) Efficient production of 1, 3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37:225–233. doi:10.1007/s00449-013-0989-0

    Article  CAS  PubMed  Google Scholar 

  • Dürre P, Hollergschwandner C (2004) Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:69–74. doi:10.1016/j.anaerobe.2003.11.001

    Article  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384. doi:10.1016/j.lfs.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  • Jain MK, Glesson J, Upreti GG (1978) Intrinsic perturbing ability of alkanols in lipid bilayers. Biochim Biophys Acta 509:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118. doi:10.1016/j.biortech.2013.05.040

    Article  CAS  Google Scholar 

  • Linden JC, Moreira A (1983) Anaerobic production of chemicals. In: Hollaender A et al (eds) Basic Biology of New Developments in Biotechnology, Basic Life Sciences. Plenum, New York, pp 377–403

    Chapter  Google Scholar 

  • Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061. doi:10.1021/pr9012078

    Article  CAS  PubMed  Google Scholar 

  • Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas GJE, Zeng AP, Papanikolaou S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12:57–68. doi:10.1002/elsc.201100058

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331. doi:10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71. doi:10.1002/lite.200900017

    Article  CAS  Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208. doi:10.1016/S0168-1656(99)00217-5

    Article  CAS  PubMed  Google Scholar 

  • Petitdemange E, Durr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 5:498–502. doi:10.1007/BF01570021

    Article  Google Scholar 

  • Reimann A, Biebl H, Deckwer WD (1998) Production of 1,3-propanediol in by Clostridium butyricum in continuous culture with cell recycling. Appl Biochem Microbiol 49:359–363. doi:10.1007/s002530051182

    Article  CAS  Google Scholar 

  • Ringel AK, Wilkens E, Hortig D, Willke T, Vorlop KD (2012) An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Appl Microbiol Biotechnol 93:1049–1056. doi:10.1007/s00253-011-3594-7

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Katsura T (1988) Steady-state kinetic study o the inhibition of the adenosinetriphosphatase activity of dynein from Tetrahymena cilia by glycerol. J Biochem 103:99–105

    CAS  PubMed  Google Scholar 

  • Sullivan L, Benett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATTC 824 and Spo0A strain variants. J Ind Biotechnol 33:298–308. doi:10.1007/s10295

    Article  CAS  Google Scholar 

  • Szymanowska-Powałowska D, Białas W (2014) Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol 14:45. doi:10.1186/1471-2180-14-45

    Article  PubMed Central  PubMed  Google Scholar 

  • Szymanowska-Powałowska D, Drożdżyńska A, Remszel N (2013a) Isolation of new strains of bacteria able to synthesize 1,3-propanediol from glycerol. Adv Microbiol 3:171–180. doi:10.4236/aim.2013.32027

    Article  Google Scholar 

  • Szymanowska-Powałowska D, Piątkowska J, Leja K (2013b) Microbial Purification of Postfermentation Medium after 1,3-PD Production from Raw Glycerol. Biomed Res Int 2013:949107. doi:10.1155/2013/949107

    PubMed Central  PubMed  Google Scholar 

  • Szymanowska-Powałowska D, Leja K (2014) An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electron J Biotechnol 17:72–78. doi:10.1016/j.ejbt.2013.12.010

    Article  Google Scholar 

  • Taylor M, Ramound JB, Tuffin M, Burton S, Eley K, Cowan (2012) Mechanisms and Applications of Microbial Solvent. In: Liu ZL (ed) Tolerance Microbial Stress Tolerance for Biofuels: Systems Biology. Springer-Verlag, Berlin Heidelberg, pp 178–199

    Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv 29:442–452. doi:10.1016/j.biotechadv.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2013) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATTC 6013. Appl Microbiol Biotechnol 93:1325–1335. doi:10.1007/s00253-011-3766-5

    Article  Google Scholar 

  • Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063. doi:10.1007/s00253-011-3595-6

    Article  CAS  PubMed  Google Scholar 

  • Zeng AP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Eng 14:169–175. doi:10.1007/BF01464731

    Article  CAS  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng/Biotechnol 74:239–259. doi:10.1007/3-540-45736-4_11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was prepared within the framework of the project PO IG 01.01.02-00-074/09, co-funded by the European Union from The European Regional Development fund within the framework of the Innovative Economy Operational Programme 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Szymanowska-Powałowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szymanowska-Powałowska, D., Kubiak, P. Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1. Appl Microbiol Biotechnol 99, 3179–3189 (2015). https://doi.org/10.1007/s00253-014-6292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6292-4

Keywords