Skip to main content
Log in

Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellobiose 2-epimerase (CE) catalyzes the reversible epimerization of cellobiose to 4-O-β-d-glucopyranosyl-d-mannose. By using a PCR-based metagenomic approach, 71 ce-like gene fragments were obtained from wide-ranging environmental samples such as sheep rumen, soils, sugar beet extracts, and anaerobic sewage sludge. The frequency of isolation of the fragments similar to known sequences varied depending on the nature of the samples used. The ce-like genes appeared to be widely distributed in environmental bacteria belonging to the phyla Bacteroidetes, Chloroflexi, Dictyoglomi, Firmicutes, Proteobacteria, Spirochaetes, and Verrucomicrobia. The phylogenetic analysis suggested that the cluster of CE and CE-like proteins was functionally and evolutionarily separated from that of N-acetyl-d-glucosamine 2-epimerase (AGE) and AGE-like proteins. Two ce-like genes containing full-length ORFs, designated md1 and md2, were obtained by PCR and expressed in Escherichia coli. The recombinant mD1 and mD2 exhibited low K m values and high catalytic efficiencies (k cat/K m) for mannobiose compared with cellobiose, suggesting that they should be named mannobiose 2-epimerase, which is involved in a new mannan catabolic pathway we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Amein M, Leatherwood JM (1969) Mechanism of cellobiose epimerase. Biochem Biophys Res Commun 36:223–227. doi:10.1016/0006-291X(69)90318-0

    Article  CAS  PubMed  Google Scholar 

  • Binet MRB, Rager MN, Bouvet OMM (1998) Fructose and mannose metabolism in Aeromonas hydrophila: identification of transport systems and catabolic pathways. Microbiology 144:1113–1121. doi:10.1099/00221287-144-4-1113

    Article  CAS  PubMed  Google Scholar 

  • Centeno MSJ, Guerreiro CIPD, Dias FMV, Morland C, Tailford LE, Goyal A, Prates JAM, Ferreira LMA, Caldeira RMH, Mongodin EF, Nelson KE, Gilbert HJ, Fontes CMGA (2006) Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus. FEMS Microbiol Lett 261:123–132. doi:10.1111/j.1574-6968.2006.00342.x

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010. doi:10.1111/j.1462-2920.2005.00920.x

    Article  CAS  PubMed  Google Scholar 

  • Galbraith EA, Antonopoulos DA, White BA (2004) Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ Microbiol 6:928–937. doi:10.1111/j.1462-2920.2004.00575.x

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Hamada S, Yamaguchi K, Umene S, Ito H, Matsui H, Ozawa T, Taguchi H, Watanabe J, Wasaki J, Ito S (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem Biophys Res Commun 360:640–645. doi:10.1016/j.bbrc.2007.06.091

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Taguchi H, Hamada S, Kawauchi S, Ito H, Senoura T, Watanabe J, Nishimukai M, Ito S, Matsui H (2008) Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol 79:433–441. doi:10.1007/s00253-008-1449-7

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi K, Senoura T, Ito S, Taira T, Ito H, Wasaki J, Ito S (2014) The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch Microbiol 196:17–23. doi:10.1007/s00203-013-0938-y

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Kim YS, Kang LW, Oh DK (2012) Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes β-1,4-and α-1,4-gluco-oligosaccharides. Biotechnol Lett 34:2061–2068. doi:10.1007/s10529-012-0999-z

    Article  CAS  PubMed  Google Scholar 

  • Lee YC, Wu HM, Chang YN, Wang WC, Hsu WH (2007) The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase contains two key histidines for reversible conversion. J Mol Biol 367:895–908. doi:10.1016/j.jmb.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  • Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-d-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J Biol Chem 271:16294–16299. doi:10.1074/jbc.271.27.16294

  • Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, Shirai T (2013) Structure of novel enzyme in mannan biodegradation process 4-O-β-d-mannosyl-d-glucose phosphorylase MGP. J Mol Biol 425:4468–4478. doi:10.1016/j.jmb.2013.08.002

  • Nishimukai M, Watanabe J, Taguchi H, Senoura T, Hamada S, Matsui H, Yamamoto T, Wasaki J, Hara H, Ito S (2008) Effects of epilactose on calcium absorption and serum lipid metabolism in rats. J Agric Food Chem 56:10340–10345. doi:10.1021/jf801556m

    Article  CAS  PubMed  Google Scholar 

  • Ogimoto K, Imai S (1981) Atlas of rumen microbiology. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Ojima T, Saburi W, Sato H, Yamamoto T, Mori H, Matsui H (2011) Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM 9785. Biosci Biotechnol Biochem 75:2162–2168. doi:10.1271/bbb.110456

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Kim JE, Choi JG, Oh DK (2011) Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol 92:1187–1196. doi:10.1007/s00253-011-3403-3

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Kim JE, Lee SH, Kim YS, Kang LW, Oh DK (2013) Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase. Biotechnol Lett 35:1873–1880. doi:10.1007/s10529-013-1267-6

    Article  CAS  PubMed  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369. doi:10.1016/0300-9084(96)84768-7

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Senoura T, Taguchi H, Ito S, Hamada S, Matsui H, Fukiya S, Yokota A, Watanabe J, Wasaki J, Ito S (2009) Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci Biotechnol Biochem 73:400–406. doi:10.1271/bbb.80691

    Article  CAS  PubMed  Google Scholar 

  • Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, Ito S (2011) New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun 408:701–706. doi:10.1016/j.bbrc.2011.04.095

    Article  CAS  PubMed  Google Scholar 

  • Sundset MA, Præsteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol 54:424–438. doi:10.1007/s00248-007-9254-x

    Article  Google Scholar 

  • Taguchi H, Senoura T, Hamada S, Matsui H, Kobayashi Y, Watanabe J, Wasaki J, Ito S (2008) Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiol Lett 287:34–40. doi:10.1111/j.1574-6968.2008.01281.x

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyler TR, Leatherwood JM (1967) Epimerization of disaccharides by enzyme preparations from Ruminococcus albus. Arch Biochem Biophys 119:363–367. doi:10.1016/0003-9861(67)90466-3

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Nishimukai M, Taguchi H, Senoura T, Hamada S, Matsui H, Yamamoto T, Wasaki J, Hara H, Ito S (2008) Prebiotic properties of epilactose. J Dairy Sci 91:4518–4526. doi:10.3168/jds.2008-1367

  • Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163. doi:10.1006/anae.1998.0155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Tomohiro Hirose and Mr. Akira Miyao at the Center for Instrumental Analysis, Hokkaido University, determined the N-terminal amino acid sequences of mD1 and mD2. This research was partly supported by the Special Coordination Funds for Promoting Science and Technology and by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 852 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasaki, J., Taguchi, H., Senoura, T. et al. Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach. Appl Microbiol Biotechnol 99, 4287–4295 (2015). https://doi.org/10.1007/s00253-014-6265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6265-7

Keywords

Navigation