Skip to main content

Advertisement

Log in

Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The antagonistic activity of lipopeptides in Bacillus subtilis 916 has been well documented, yet relatively little is known about their mechanism in biofilm formation and environmental colonization. This study sought to examine the interaction of B. subtilis 916 on Rhizoctonia solani-infected rice sheath to elucidate the mechanism of colonization on plant leaves. Results showed that the mutants Δbac, Δsrf, and Δsrf + bac of B. subtilis 916, deficient in bacillomycin L and surfactin production, respectively, not only altered colony morphology but also changed swarming motility, reduced antagonistic activity, and decreased biofilm formation. In particular, biofilm formation in mutant Δbac, not Δsrf or Δsrf + bac, were restored with addition of surfactin and bacillomycin L at 10 and 50 μg/mL, respectively. Moreover, surfactin and bacillomycin L were able to restore or enhance swarming motility in the corresponding mutants at 10 μg/mL, respectively. With the aid of green fluorescent protein tagging, it was demonstrated that B. subtilis 916 formed a robust biofilm on the rice sheath blight lesion and colonized well on R. solani-infected rice sheath, while its corresponding mutants performed poorly. These observations also correlated with the rice cultivar pot experiments, in which B. subtilis 916 exhibited greater biocontrol than its mutants. Our results suggest that surfactin and bacillomycin L contribute differently but synergistically to the biocontrol of rice sheath blight in B. subtilis 916 through its antifungal activity, biofilm formation, and colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  CAS  PubMed  Google Scholar 

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–E1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Branda SS, González-Pastor JE, Ben-yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 98:11621–11626

  • Branda SS, González-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo J, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633 a multifunctional hybrid between a peptide synthetase an amino transferase and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc a new antibiotic of the iturin group isolations structures and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247

    Article  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Guttenplan SB, Blair KM, Kearns DB (2010) The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 6:e1001243

    Article  PubMed Central  PubMed  Google Scholar 

  • Henry G, Deleu M, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13:1824–1837

    Article  CAS  PubMed  Google Scholar 

  • Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156:1009–10018

    Article  CAS  PubMed  Google Scholar 

  • Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149:684–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koumoutsi A, Chen X, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus. J Bacteriol 186:1084–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177:2403–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Nie F, Wei L, Wei B, Chen Z (2007) Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation. Appl Microbiol Biotechnol 75:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • López D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo C, Wang X, Chen Z, Liu Y, Zhang J, Liu Y, Nie Y, Yu J, Yin X (2010) The operon, structure and biological activities of the lipopeptide bacillomycin L produced by Bacillus subtilis 916. Sci Agric Sin 43:4624–4634

    CAS  Google Scholar 

  • Luo C, Wang X, Zhou H, Liu Y, Chen Z (2013) The operon, structure and biological activities of the lipopeptide fengycin produced by Bacillus subtilis 916. Sci Agric Sin 46:5142–5149

    CAS  Google Scholar 

  • Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology 152:2801–2807

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J-L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–22344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Su’udi M, Park J-M, Kang W-R, Hwang D-J, Kim S, Ahn I-P (2013) Quantification of rice sheath blight progression caused by Rhizoctonia solani. J Microbiol 51:380–388

    Article  PubMed  Google Scholar 

  • Tosato V, Albertinij AM, Zotti M, Sondal S, Bruschi CV (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Luo C, Chen Z (2012) Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain 916. J Bacteriol 194:5467–5468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79:808–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaman M, Toth I (2013) Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure–activity relationships. Front Immunol 4:1–12

    Article  Google Scholar 

  • Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. John Truong and Dr. Jiabin Ji for the linguistic revision and critical review of the manuscript. This work was supported by the National High-tech R&D Program of China (2011AA10A201), National Natural Science Foundation of China (grant no. 30900929), and the Science Foundation of the Jiangsu Academy of Agricultural Sciences (grant no. CX(12)5001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuping Luo or Zhiyi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Zhou, H., Zou, J. et al. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani . Appl Microbiol Biotechnol 99, 1897–1910 (2015). https://doi.org/10.1007/s00253-014-6195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6195-4

Keywords