Skip to main content

Advertisement

Log in

Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe–S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram JW, Nedwell DB (1978) Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch Microbiol 117(1):89–92

    Article  CAS  PubMed  Google Scholar 

  • Achtnich C, Bak F, Conrad R (1995a) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fert Soils 19(1):65–72

    Article  CAS  Google Scholar 

  • Achtnich C, Schuhmann A, Wind T, Conrad R (1995b) Role of interspecies H2 transfer to sulfate and ferric iron‐reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol Ecol 16(1):61–70

    Article  CAS  Google Scholar 

  • Ahn J-H, Song J, Kim B-Y, Kim M-S, Joa J-H, Weon H-Y (2012) Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 50(5):754–765

    Article  PubMed  Google Scholar 

  • Akagi J, Campbell LL (1962) Studies on thermophilic sulfate-reducing bacteria III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol 84(6):1194–1201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146(2):177–180

    Article  CAS  Google Scholar 

  • Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43(7):1450–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodegom PM, Scholten J, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49(2):261–268

    Article  PubMed  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall Inc

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24(5):691–710

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang N, Lu W, Chen W, Xia B, Wang X, Zhu Z (1992) Gaseous loss of nitrogen from fertilizers applied to a paddy soil in southeastern China. Pedosphere 2(3):209–217

    CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Supplement 1):4516–4522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chidthaisong A, Conrad R (2000) Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol 31(1):73–86

    Article  CAS  PubMed  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cy 2(4):299–327

    Article  CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154(1):23–30

    Article  CAS  Google Scholar 

  • Ding L-J, Su J-Q, Xu H-J, Jia Z-J, Zhu Y-G (2014) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J. doi:10.1038/ismej.2014.159

  • Elferink SJO, Akkermans-van Vliet W, Bogte JJ, Stams AJ (1999) Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol 49(2):345–350

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103(3):626–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58(1):70–77

    PubMed Central  PubMed  Google Scholar 

  • Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137(11):2657–2661

    Article  CAS  Google Scholar 

  • Hanert HH (1981) The genus Gallionella the prokaryotes. Springer, pp 509–515

  • Harada N, Nishiyama M, Otsuka S, Matsumoto S (2005) Effects of inoculation of phototrophic purple bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Sci Plant Nutr 51(3):361–367

    Article  Google Scholar 

  • Harmsen HJ, Van Kuijk BL, Plugge CM, Akkermans AD, De Vos WM, Stams AJ (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48(4):1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44(4):665–673

    Article  Google Scholar 

  • Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW (2009) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4(2):267–278

    Article  PubMed  Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136(3):194–198

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30(3):225–236

    Article  CAS  Google Scholar 

  • Katyal J, Gadalla A (1990) Fate of urea-N in floodwater. Plant Soil 121(1):21–30

    Article  CAS  Google Scholar 

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep‐sea environments. FEMS Microbiol Ecol 75(1):123–133

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Choi K-M, Yin C-R, Lee K-Y, Im W-T, Lim JH, Lee S-T (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26(10):819–822

    Article  CAS  PubMed  Google Scholar 

  • King GM (1984) Utilization of hydrogen, acetate, and “noncompetitive”; substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3(4):275–306

    Article  CAS  Google Scholar 

  • Klüber HD, Conrad R (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25(3):301–318

    Article  Google Scholar 

  • Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54(6):2297–2300

    Article  CAS  PubMed  Google Scholar 

  • Koh R-H, Song H-G (2007) Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol 17(11):1805–1810

    CAS  PubMed  Google Scholar 

  • Komlos J, Kukkadapu R, Zachara J, Jaffe P (2007) Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Water Res 41(13):2996–3004

  • Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7(5):1038–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current protocols in microbiology 1E. 5.1–1E. 5.20

  • Lakshmi K, Sasikala C, Ramana CV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59(9):2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2):128–150

    Article  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71(8):4414–4426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24(5):625–645

    Article  CAS  PubMed  Google Scholar 

  • Liu X-Z, Zhang L-M, Prosser JI, He J-Z (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41(4):687–694

    Article  CAS  Google Scholar 

  • Lopes AR, Manaia CM, Nunes OC (2014) Bacterial community variations in an alfalfa‐rice rotation system revealed by 16S rRNA gene 454‐pyrosequencing. FEMS Microbiol Ecol 87(3):650–663

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336–344

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory fe (iii) and mn (iv) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed Central  PubMed  Google Scholar 

  • Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25(3):360–375

    Article  CAS  PubMed  Google Scholar 

  • Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22(4):551–558

    Article  CAS  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  PubMed  Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T, Kanzaki H (2012) The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electron J Biotechnol 15(6):7–7

    Google Scholar 

  • Oda Y, Wanders W, Huisman LA, Meijer WG, Gottschal JC, Forney LJ (2002) Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl Environ Microbiol 68(7):3467–3477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59(3):531–535

    Article  CAS  PubMed  Google Scholar 

  • Ouattara AS, Jacq VA (1992) Characterization of sulfate‐reducing bacteria isolated from Senegal ricefields. FEMS Microbiol Ecol 10(3):217–228

    Article  Google Scholar 

  • Prinn RG (1994) Global atmospheric-biospheric chemistry. Plenum, New York, pp 1–18

    Book  Google Scholar 

  • Roy R, Conrad R (1999) Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiol Ecol 28(1):49–61

    Article  CAS  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of Gram‐negative sulfate‐reducing bacteria on rice roots. FEMS Microbiol Ecol 36(2–3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279(5356):1519–1522

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, He Q, Wang W (1993) Titratable acidity and alkalinity of red soil surfaces. Pedosphere 3(2):107–117

    Google Scholar 

  • Skerratt JH, Bowman JP, Nichols PD (2002) Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52(6):2101–2106

    CAS  PubMed  Google Scholar 

  • Srinivas A, Ch S (2014) Rhodoplanes oryzae sp. nov., a phototrophic alphaproteobacterium isolated from the rhizosphere soil of paddy. Int J Syst Evol Microbiol ijs. 0.063347-0

  • Stubner S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11(4):304–313

    Article  CAS  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4):314–318

    Article  CAS  PubMed  Google Scholar 

  • Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54(6):1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Treude N, Rosencrantz D, Liesack W, Schnell S (2003) Strain FAc12, a dissimilatory iron‐reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44(2):261–269

    Article  CAS  PubMed  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. Arch Mikrobiol 88(4):285–298

    Article  CAS  PubMed  Google Scholar 

  • Van Bodegom P, Stams A (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere 39(2):167–182

    Article  Google Scholar 

  • Vreeland R, Litchfield C, Martin E, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30(2):485–495

    Article  CAS  Google Scholar 

  • Wang JS, Logan JA, McElroy MB, Duncan BN, Megretskaia IA, Yantosca RM (2004) A 3‐D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem Cy 18(3):

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X-J, Yang J, Chen X-P, Sun G-X, Zhu Y-G (2009) Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. J Soil Sediment 9(6):568–577

    Article  Google Scholar 

  • Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78(19):7042–7047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wind T, Conrad R (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate‐reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol 18(4):257–266

    Article  CAS  Google Scholar 

  • Wind T, Conrad R (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37(3):253–278

    Article  CAS  Google Scholar 

  • Wind T, Stubner S, Conrad R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22(2):269–279

    Article  CAS  PubMed  Google Scholar 

  • Winfrey M, Zeikus J (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol 33(2):275–281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing G, Cao Y, Shi S, Sun G, Du L, Zhu J (2002) Denitrification in underground saturated soil in a rice paddy region. Soil Biol Biochem 34(11):1593–1598

    Article  CAS  Google Scholar 

  • Zehnder A, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats

  • Zhao J-S, Manno D, Beaulieu C, Paquet L, Hawari J (2005) Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55(4):1511–1520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Basic Research Program (2014CB238903), the National Natural Science Foundation of China (41173028), and the Opening Fund of State Key Laboratory of Environmental Geochemistry (SKLEG2013810). We thank Ying Huang for her suggestion and help for CCA analysis. Associate editor Dr. Akira Kimura and two anonymous reviewers are acknowledged for critical comments and suggestions, which have improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tangfu Xiao or Weimin Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Xiao, T., Ning, Z. et al. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol 99, 2911–2922 (2015). https://doi.org/10.1007/s00253-014-6194-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6194-5

Keywords

Navigation