Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 6, pp 2911–2922 | Cite as

Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water

  • Min Sun
  • Tangfu XiaoEmail author
  • Zengping Ning
  • Enzong Xiao
  • Weimin SunEmail author
Environmental Biotechnology

Abstract

Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe–S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

Keywords

Fe and S cycles Illumina sequencing Soil Acid mine drainage Fe- and S-related bacteria 

Notes

Acknowledgments

This research was funded by the National Basic Research Program (2014CB238903), the National Natural Science Foundation of China (41173028), and the Opening Fund of State Key Laboratory of Environmental Geochemistry (SKLEG2013810). We thank Ying Huang for her suggestion and help for CCA analysis. Associate editor Dr. Akira Kimura and two anonymous reviewers are acknowledged for critical comments and suggestions, which have improved the manuscript considerably.

Supplementary material

253_2014_6194_MOESM1_ESM.pdf (22 kb)
ESM 1 (PDF 21 kb)

References

  1. Abram JW, Nedwell DB (1978) Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch Microbiol 117(1):89–92PubMedCrossRefGoogle Scholar
  2. Achtnich C, Bak F, Conrad R (1995a) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fert Soils 19(1):65–72CrossRefGoogle Scholar
  3. Achtnich C, Schuhmann A, Wind T, Conrad R (1995b) Role of interspecies H2 transfer to sulfate and ferric iron‐reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol Ecol 16(1):61–70CrossRefGoogle Scholar
  4. Ahn J-H, Song J, Kim B-Y, Kim M-S, Joa J-H, Weon H-Y (2012) Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 50(5):754–765PubMedCrossRefGoogle Scholar
  5. Akagi J, Campbell LL (1962) Studies on thermophilic sulfate-reducing bacteria III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol 84(6):1194–1201PubMedCentralPubMedGoogle Scholar
  6. Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146(2):177–180CrossRefGoogle Scholar
  7. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43(7):1450–1455PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bodegom PM, Scholten J, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49(2):261–268PubMedCrossRefGoogle Scholar
  9. Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall IncGoogle Scholar
  10. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24(5):691–710PubMedCrossRefGoogle Scholar
  11. Cai G, Yang N, Lu W, Chen W, Xia B, Wang X, Zhu Z (1992) Gaseous loss of nitrogen from fertilizers applied to a paddy soil in southeastern China. Pedosphere 2(3):209–217Google Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedCentralPubMedCrossRefGoogle Scholar
  13. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Supplement 1):4516–4522PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chidthaisong A, Conrad R (2000) Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol 31(1):73–86PubMedCrossRefGoogle Scholar
  15. Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cy 2(4):299–327CrossRefGoogle Scholar
  16. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154(1):23–30CrossRefGoogle Scholar
  17. Ding L-J, Su J-Q, Xu H-J, Jia Z-J, Zhu Y-G (2014) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J. doi: 10.1038/ismej.2014.159
  18. Elferink SJO, Akkermans-van Vliet W, Bogte JJ, Stams AJ (1999) Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol 49(2):345–350CrossRefGoogle Scholar
  19. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103(3):626–631PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58(1):70–77PubMedCentralPubMedGoogle Scholar
  21. Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137(11):2657–2661CrossRefGoogle Scholar
  22. Hanert HH (1981) The genus Gallionella the prokaryotes. Springer, pp 509–515Google Scholar
  23. Harada N, Nishiyama M, Otsuka S, Matsumoto S (2005) Effects of inoculation of phototrophic purple bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Sci Plant Nutr 51(3):361–367CrossRefGoogle Scholar
  24. Harmsen HJ, Van Kuijk BL, Plugge CM, Akkermans AD, De Vos WM, Stams AJ (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48(4):1383–1387PubMedCrossRefGoogle Scholar
  25. Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44(4):665–673CrossRefGoogle Scholar
  26. Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW (2009) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4(2):267–278PubMedCrossRefGoogle Scholar
  27. Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136(3):194–198CrossRefGoogle Scholar
  28. Jensen AB, Webb C (1995) Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30(3):225–236CrossRefGoogle Scholar
  29. Katyal J, Gadalla A (1990) Fate of urea-N in floodwater. Plant Soil 121(1):21–30CrossRefGoogle Scholar
  30. Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep‐sea environments. FEMS Microbiol Ecol 75(1):123–133PubMedCrossRefGoogle Scholar
  31. Kim MK, Choi K-M, Yin C-R, Lee K-Y, Im W-T, Lim JH, Lee S-T (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26(10):819–822PubMedCrossRefGoogle Scholar
  32. King GM (1984) Utilization of hydrogen, acetate, and “noncompetitive”; substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3(4):275–306CrossRefGoogle Scholar
  33. Klüber HD, Conrad R (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25(3):301–318CrossRefGoogle Scholar
  34. Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54(6):2297–2300PubMedCrossRefGoogle Scholar
  35. Koh R-H, Song H-G (2007) Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol 17(11):1805–1810PubMedGoogle Scholar
  36. Komlos J, Kukkadapu R, Zachara J, Jaffe P (2007) Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Water Res 41(13):2996–3004Google Scholar
  37. Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7(5):1038–1050PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current protocols in microbiology 1E. 5.1–1E. 5.20Google Scholar
  39. Lakshmi K, Sasikala C, Ramana CV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59(9):2153–2157PubMedCrossRefGoogle Scholar
  40. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2):128–150CrossRefGoogle Scholar
  42. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71(8):4414–4426PubMedCentralPubMedCrossRefGoogle Scholar
  43. Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24(5):625–645PubMedCrossRefGoogle Scholar
  44. Liu X-Z, Zhang L-M, Prosser JI, He J-Z (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41(4):687–694CrossRefGoogle Scholar
  45. Lopes AR, Manaia CM, Nunes OC (2014) Bacterial community variations in an alfalfa‐rice rotation system revealed by 16S rRNA gene 454‐pyrosequencing. FEMS Microbiol Ecol 87(3):650–663PubMedCrossRefGoogle Scholar
  46. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336–344PubMedCrossRefGoogle Scholar
  47. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory fe (iii) and mn (iv) reduction. Adv Microb Physiol 49:219–286PubMedCrossRefGoogle Scholar
  48. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25(3):360–375PubMedCrossRefGoogle Scholar
  50. Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22(4):551–558PubMedCrossRefGoogle Scholar
  51. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978PubMedCrossRefGoogle Scholar
  52. Nunkaew T, Kantachote D, Nitoda T, Kanzaki H (2012) The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electron J Biotechnol 15(6):7–7Google Scholar
  53. Oda Y, Wanders W, Huisman LA, Meijer WG, Gottschal JC, Forney LJ (2002) Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl Environ Microbiol 68(7):3467–3477PubMedCentralPubMedCrossRefGoogle Scholar
  54. Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59(3):531–535PubMedCrossRefGoogle Scholar
  55. Ouattara AS, Jacq VA (1992) Characterization of sulfate‐reducing bacteria isolated from Senegal ricefields. FEMS Microbiol Ecol 10(3):217–228CrossRefGoogle Scholar
  56. Prinn RG (1994) Global atmospheric-biospheric chemistry. Plenum, New York, pp 1–18CrossRefGoogle Scholar
  57. Roy R, Conrad R (1999) Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiol Ecol 28(1):49–61CrossRefGoogle Scholar
  58. Scheid D, Stubner S (2001) Structure and diversity of Gram‐negative sulfate‐reducing bacteria on rice roots. FEMS Microbiol Ecol 36(2–3):175–183PubMedCrossRefGoogle Scholar
  59. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279(5356):1519–1522PubMedCrossRefGoogle Scholar
  61. Shao Z, He Q, Wang W (1993) Titratable acidity and alkalinity of red soil surfaces. Pedosphere 3(2):107–117Google Scholar
  62. Skerratt JH, Bowman JP, Nichols PD (2002) Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52(6):2101–2106PubMedGoogle Scholar
  63. Srinivas A, Ch S (2014) Rhodoplanes oryzae sp. nov., a phototrophic alphaproteobacterium isolated from the rhizosphere soil of paddy. Int J Syst Evol Microbiol ijs. 0.063347-0Google Scholar
  64. Stubner S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57(2):219–230PubMedCrossRefGoogle Scholar
  65. Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11(4):304–313CrossRefGoogle Scholar
  66. Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4):314–318PubMedCrossRefGoogle Scholar
  67. Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54(6):1943–1949PubMedCrossRefGoogle Scholar
  68. Treude N, Rosencrantz D, Liesack W, Schnell S (2003) Strain FAc12, a dissimilatory iron‐reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44(2):261–269PubMedCrossRefGoogle Scholar
  69. Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. Arch Mikrobiol 88(4):285–298PubMedCrossRefGoogle Scholar
  70. Van Bodegom P, Stams A (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere 39(2):167–182CrossRefGoogle Scholar
  71. Vreeland R, Litchfield C, Martin E, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30(2):485–495CrossRefGoogle Scholar
  72. Wang JS, Logan JA, McElroy MB, Duncan BN, Megretskaia IA, Yantosca RM (2004) A 3‐D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem Cy 18(3):Google Scholar
  73. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267PubMedCentralPubMedCrossRefGoogle Scholar
  74. Wang X-J, Yang J, Chen X-P, Sun G-X, Zhu Y-G (2009) Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. J Soil Sediment 9(6):568–577CrossRefGoogle Scholar
  75. Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78(19):7042–7047PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wind T, Conrad R (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate‐reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol 18(4):257–266CrossRefGoogle Scholar
  77. Wind T, Conrad R (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37(3):253–278CrossRefGoogle Scholar
  78. Wind T, Stubner S, Conrad R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22(2):269–279PubMedCrossRefGoogle Scholar
  79. Winfrey M, Zeikus J (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol 33(2):275–281PubMedCentralPubMedGoogle Scholar
  80. Xing G, Cao Y, Shi S, Sun G, Du L, Zhu J (2002) Denitrification in underground saturated soil in a rice paddy region. Soil Biol Biochem 34(11):1593–1598CrossRefGoogle Scholar
  81. Zehnder A, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitatsGoogle Scholar
  82. Zhao J-S, Manno D, Beaulieu C, Paquet L, Hawari J (2005) Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55(4):1511–1520PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations