Applied Microbiology and Biotechnology

, Volume 98, Issue 24, pp 9983–9992 | Cite as

Selective capture of transcribed sequences in the functional gene analysis of microbial pathogens

  • Yang Wang
  • Li Yi
  • Shaohui Wang
  • Chengping Lu
  • Chan Ding


Selective capture of transcribed sequences (SCOTS) is an effective method to identify bacterial genes differentially expressed during different biological processes, including pathogenic interactions with a host species. The method can be used to elucidate molecular mechanisms driving and maintaining such interactions. The method is a powerful genetic tool that overcomes limitations found in other methods, by working with small amounts of mRNA and allowing for the separation of bacterial cDNA from host cDNA. It has been increasingly used in the discovery of genes involved in the bacterium-host interaction. In this review, we briefly introduce the SCOTS method, outline the technical advances offered in the method, and focus on the method’s applications in several microbial pathogens.


Selective capture of transcribed sequences Pathogenic Bacterium-host interaction Animal pathogens 



This work was supported by the National Natural Science Foundation of China (31201910), Sponsored by the Program for Science & Technology Innovation Talents in Universities of Henan Province (14HASTIT024), and Foundation for University Key Teacher by the Ministry of Education of Henan Province (2013GGJS-068), the Science and Technology development project of Henan Province (142102310297), the Science and Technology Research Foundation of Henan Province Educational Committee (13A230261, 14A230003).


  1. An R, Grewal PS (2012) Comparative study of differential gene expression in closely related bacterial species by comparative hybridization. Methods Mol Biol 815:103–119. doi: 10.1007/978-1-61779-424-7_9 CrossRefPubMedGoogle Scholar
  2. Baltes N, Gerlach GF (2004) Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences. Infect Immun 72(11):6711–6716. doi: 10.1128/IAI.72.11.6711-6716.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Baltes N, Buettner FF, Gerlach GF (2007) Selective capture of transcribed sequences (SCOTS) of Actinobacillus pleuropneumoniae in the chronic stage of disease reveals an HlyX-regulated autotransporter protein. Vet Microbiol 123(1–3):110–121. doi: 10.1016/j.vetmic.2007.03.026 CrossRefPubMedGoogle Scholar
  4. Bauer ME, Fortney KR, Harrison A, Janowicz DM, Munson RS Jr, Spinola SM (2008) Identification of Haemophilus ducreyi genes expressed during human infection. Microbiology 154(Pt 4):1152–1160. doi: 10.1099/mic.0.2007/013953-0 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chen X, Gao S, Wang XQ, Jiao XA, Liu XF (2007) Identification of APEC genes expressed in vivo by selective capture of transcribed sequences. Wei Sheng Wu Xue Bao 47(3):407–412PubMedGoogle Scholar
  6. Chen LY, Wei KC, Huang AC, Wang K, Huang CY, Yi D, Tang CY, Galas DJ, Hood LE (2012) RNASEQR—a streamlined and accurate RNA-seq sequence analysis program. Nucleic Acids Res 40(6):e42. doi: 10.1093/nar/gkr1248 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Daigle F, Graham JE, Curtiss R 3rd (2001) Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol 41(5):1211–1222CrossRefPubMedGoogle Scholar
  8. Daigle F, Hou JY, Clark-Curtiss JE (2002) Microbial gene expression elucidated by selective capture of transcribed sequences (SCOTS). Methods Enzymol 358:108–122CrossRefPubMedGoogle Scholar
  9. Darwin AJ (2005) Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol 7(2):135–149PubMedGoogle Scholar
  10. Donatin E, Drancourt M (2012) DNA microarrays for the diagnosis of infectious diseases. Med Mal Infect 42(10):453–459. doi: 10.1016/j.medmal.2012.07.017 CrossRefPubMedGoogle Scholar
  11. Dozois CM, Daigle F, Curtiss R 3rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 100(1):247–252. doi: 10.1073/pnas.232686799 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Dudley EG (2008) In vivo expression technology and signature-tagged mutagenesis screens for identifying mechanisms of survival of zoonotic foodborne pathogens. Foodborne Pathog Dis 5(4):473–485. doi: 10.1089/fpd.2008.0104 CrossRefPubMedGoogle Scholar
  13. Emboule L, Daigle F, Meyer DF, Mari B, Pinarello V, Sheikboudou C, Magnone V, Frutos R, Viari A, Barbry P, Martinez D, Lefrancois T, Vachiery N (2009) Innovative approach for transcriptomic analysis of obligate intracellular pathogen: selective capture of transcribed sequences of Ehrlichia ruminantium. BMC Mol Biol. doi: 10.1186/1471-2199-10-111 PubMedCentralPubMedGoogle Scholar
  14. Faucher SP, Curtiss R 3rd, Daigle F (2005) Selective capture of Salmonella enterica serovar typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun 73(8):5217–5221. doi: 10.1128/IAI.73.8.5217-5221.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F (2006) Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 103(6):1906–1911. doi: 10.1073/pnas.0509183103 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Faucher SP, Mueller CA, Shuman HA (2011) Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Front Microbiol 2:60. doi: 10.3389/fmicb.2011.00060 PubMedCentralPubMedGoogle Scholar
  17. Fittipaldi N, Gottschalk M, Vanier G, Daigle F, Harel J (2007) Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Appl Environ Microbiol 73(13):4359–4364. doi: 10.1128/AEM.00258-07 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96(20):11554–11559PubMedCentralCrossRefPubMedGoogle Scholar
  19. Graham JE, Peek RM Jr, Krishna U, Cover TL (2002) Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterology 123(5):1637–1648PubMedCentralCrossRefPubMedGoogle Scholar
  20. Guo D, Lu Y, Zhang A, Liu J, Yuan D, Jiang Q, Lin H, Si C, Qu L (2012) Identification of genes transcribed by Pasteurella multocida in rabbit livers through the selective capture of transcribed sequences. FEMS Microbiol Lett 331(2):105–112. doi: 10.1111/j.1574-6968.2012.02559.x CrossRefPubMedGoogle Scholar
  21. Guo CM, Chen RR, Kalhoro DH, Wang ZF, Liu GJ, Lu CP, Liu YJ (2014) Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages. PLoS ONE 9(2):e87980. doi: 10.1371/journal.pone.0087980 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Haydel SE, Clark-Curtiss JE (2004) Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett 236(2):341–347. doi: 10.1016/j.femsle.2004.06.010 CrossRefPubMedGoogle Scholar
  23. Haydel SE, Clark-Curtiss JE (2006) The Mycobacterium tuberculosis TrcR response regulator represses transcription of the intracellularly expressed Rv1057 gene, encoding a seven-bladed beta-propeller. J Bacteriol 188(1):150–159. doi: 10.1128/JB.188.1.150-159.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hou JY, Graham JE, Clark-Curtiss JE (2002) Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect Immun 70(7):3714–3726PubMedCentralCrossRefPubMedGoogle Scholar
  25. Jin H, Wan Y, Zhou R, Li L, Luo R, Zhang S, Hu J, Langford PR, Chen H (2008) Identification of genes transcribed by Haemophilus parasuis in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environ Microbiol 10(12):3326–3336. doi: 10.1111/j.1462-2920.2008.01729.x CrossRefPubMedGoogle Scholar
  26. Karavolos MH, Winzer K, Williams P, Khan CM (2013) Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. Mol Microbiol 87(3):455–465. doi: 10.1111/mmi.12110 CrossRefPubMedGoogle Scholar
  27. Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM (2006) Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74(6):3427–3436. doi: 10.1128/IAI.00107-06 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Li W, Liu L, Chen H, Zhou R (2009) Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. FEMS Microbiol Lett 292(1):123–133. doi: 10.1111/j.1574-6968.2008.01476.x CrossRefPubMedGoogle Scholar
  29. Li W, Liu L, Qiu D, Chen H, Zhou R (2010) Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 300(7):482–488. doi: 10.1016/j.ijmm.2010.04.018 CrossRefPubMedGoogle Scholar
  30. Liu S, Graham JE, Bigelow L, Morse PD 2nd, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68(4):1697–1705PubMedCentralCrossRefPubMedGoogle Scholar
  31. Liu Y, Morgan S, Ream A, Huang L (2013) Gene expression profiling of a nisin-sensitive Listeria monocytogenes Scott A ctsR deletion mutant. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-013-1243-0 PubMedCentralGoogle Scholar
  32. Morrow BJ, Graham JE, Curtiss R 3rd (1999) Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome. Infect Immun 67(10):5106–5116PubMedCentralPubMedGoogle Scholar
  33. Myllykangas S, Koskenvuo JW, Alastalo TP (2013) Novel high-throughput sequencing strategies in genetic diagnostics. Duodecim 129(2):141–148PubMedGoogle Scholar
  34. Oliveira S, Pijoan C (2004) Haemophilus parasuis: new trends on diagnosis, epidemiology and control. Vet Microbiol 99(1):1–12. doi: 10.1016/j.vetmic.2003.12.001 CrossRefPubMedGoogle Scholar
  35. Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, Arifuzzaman M, Khanam F, Bukka A, Kalsy A, Porwollik S, Leung DT, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET (2011) In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis 5(12):e1419. doi: 10.1371/journal.pntd.0001419 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Tolman JS, Valvano MA (2012) Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics 13:63. doi: 10.1186/1471-2164-13-63 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Vanni M, Merenda M, Barigazzi G, Garbarino C, Luppi A, Tognetti R, Intorre L (2012) Antimicrobial resistance of Actinobacillus pleuropneumoniae isolated from swine. Vet Microbiol 156(1–2):172–177. doi: 10.1016/j.vetmic.2011.10.022 CrossRefPubMedGoogle Scholar
  38. Winstanley C (2002) Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol 51(6):459–467PubMedGoogle Scholar
  39. Xie Q, Jin H, Luo R, Wan Y, Chu J, Zhou H, Shi B, Chen H, Zhou R (2009) Transcriptional responses of Haemophilus parasuis to iron-restriction stress in vitro. Biometals 22(6):907–916. doi: 10.1007/s10534-009-9243-2 CrossRefPubMedGoogle Scholar
  40. Yi L, Wang Y, Ma Z, Zhang H, Xie H, Yang Y, Lu C, Fan H (2013) Identification of genes transcribed by Streptococcus equi ssp. zooepidemicus in infected porcine lung. Microb Pathog 59(60C):7–12. doi: 10.1016/j.micpath.2013.02.006 CrossRefPubMedGoogle Scholar
  41. Zhou Z, Zheng J, Tian W, Li J, Zhang W, Zhang J, Meng X, Hu S, Bi D, Li Z (2009) Identification of Riemerella anatipestifer genes differentially expressed in infected duck livers by the selective capture of transcribed sequences technique. Avian Pathol 38(4):321–329. doi: 10.1080/03079450903071311 CrossRefPubMedGoogle Scholar
  42. Zhu X, Tu ZJ, Coussens PM, Kapur V, Janagama H, Naser S, Sreevatsan S (2008) Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages. Microbes Infect 10(12–13):1274–1282. doi: 10.1016/j.micinf.2008.07.025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
  2. 2.Shanghai Veterinary Research InstituteChinese Academy of Agricultural SciencesShanghaiChina
  3. 3.Department of Life ScienceLuoyang Normal UniversityLuoyangChina
  4. 4.Key Lab of Animal Bacteriology, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations