Skip to main content

Advertisement

Log in

Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The single-copy genes encoding putative polyphosphate–glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium–long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180–230 and 2–3 μmol min−1 mg−1 with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg2+ was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could shed new light on the evolutionary origin of sugar kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abed RM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12. doi:10.1111/j.1365-2672.2008.03918.x

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Current protocols in molecular biology. Greene and Wiley-Interscience, New York

    Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi:10.1093/nar/gks1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19(3):139–185. doi:10.1111/j.1574-6976.1997.tb00296.x

    Article  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2:31–40. doi:10.1002/pro.5560020104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–30. doi:10.1093/nar/gkt1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujisawa T, Okamoto S, Katayama T, Nakao M, Yoshimura H, Kajiya-Kanegae H, Yamamoto S, Yano C, Yanaka Y, Maita H, Kaneko T, Tabata S, Nakamura Y (2014) CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res 42(Database issue):D666–70. doi:10.1093/nar/gkt1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girbal E, Binot RA, Monsan RE (1989) Production, purification, properties and kinetic studies of free and immobilized polyphosphate: glucose-6-phosphotransferase from Mycobacterium phlei. Enzyme Microb Technol 11:518–527

    Article  CAS  Google Scholar 

  • Gomez-Garcia MR, Losada M, Serrano A (2003) Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302(3):601–9

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Hehuan L, Myung S, Zhang YHP (2012) One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl Microbiol Biotechnol 93:1109–1117. doi:10.1007/s00253-011-3458-1

    Article  Google Scholar 

  • Hernandez A, Ruiz MT (1998) An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. Bioinformatics 14:227–228

    Article  CAS  PubMed  Google Scholar 

  • Hsieh PC, Shenoy BC, Jentoft JE, Phillips NFB (1993) Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(p) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expres Purif 4:76–84

  • Hsieh PC, Shenoy BC, Samols D, Phillips NFB (1996a) Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem 271:4909–4915

    Article  CAS  PubMed  Google Scholar 

  • Hsieh PC, Kowalczyk TH, Phillips NFB (1996b) Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry 35:9772–9781

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong SY (2011) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. doi:10.1093/nar/gkr948

    Google Scholar 

  • Jensen TE, Baxter M, Rachlin JW, Jani V (1982) Uptake of heavy metals by Plectonema boryanum (cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environ Pollut Series A Ecol Biol 27(2):119–127. doi:10.1016/0143-1471(82)90104-0

    Article  CAS  Google Scholar 

  • Koenig T, Menze BH, Kirchner M (2008) Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 7:3708–3717. doi:10.1021/pr700859x

    Article  CAS  PubMed  Google Scholar 

  • Koide M, Miyanaga A, Kudo F, Eguchi T (2013) Characterization of polyphosphate glucokinase SCO5059 from Streptomyces coelicolor A3(2). Biosci, Biotechnol, Biochem 77:130498-1-3

    Google Scholar 

  • Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule with many functions. Ann Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk TH, Horn PJ, Pan WH, Phillips NFB (1996) Initial rate and equilibrium isotope exchange studies on the ATP-dependent activity of polyphosphate glucokinase from Propionibacterium shermanii. Biochemistry 35:6777–6785

    Article  CAS  PubMed  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, New York

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–5

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lawry N, Jensen T (1979) Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacterium Synechococcus sp. (Anacystis nidulans). Arch Microbiol 120(1):1–7. doi:10.1007/bf00413264

    Article  CAS  Google Scholar 

  • Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF (2010a) Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:703–713. doi:10.1007/s00253-010-2568-5

    Article  CAS  PubMed  Google Scholar 

  • Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF (2010b) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol 87:583–93. doi:10.1007/s00253-010-2481-y

    Article  CAS  PubMed  Google Scholar 

  • Lipmann F (1965) In: Fox SW (ed) The origins of prebiological system and their molecular matrices. Academic Press, New York, pp 259–280

  • Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATPglucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 69:3849–3857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukai T, Kawai S, Mori S, Mikami B, Murata K (2004) Crystal structure of bacterial inorganic polyphosphate/ATP-glucomannokinase. Insights into kinase evolution. J Biol Chem 279:50591–50600. doi:10.1074/jbc.M408126200

    Article  CAS  PubMed  Google Scholar 

  • Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res 42(Database issue):D26–31. doi:10.1093/nar/gkt1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pepin CA, Wood HG (1986) Polyphosphate glucokinase from Propionibacterium shermanii. Kinetics and demonstration that the mechanism involves both processive and nonprocessive type reactions. J Biol Chem 261:4476–4480

    CAS  PubMed  Google Scholar 

  • Phillips NFB, Hsieh PC, Kowalczyk TH (1999) Polyphosphate glucokinase. Prog Mol Subcell Biol 23:101–125

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647. doi:10.1146/annurev.biochem.77.083007.093039

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Hermann M, Stainer RY (1979) Generic assignment, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–16

    Article  Google Scholar 

  • Schopf JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton B, Potts M (eds) The ecology of cyanobacteria. Springer, Netherlands, pp 13–35

    Chapter  Google Scholar 

  • Serrano A, Rivas J, Losada M (1984) Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119. J Bacteriol 158(1):317–24

    PubMed Central  CAS  PubMed  Google Scholar 

  • Serrano A (1992) Purification, characterization and function of dihydrolipoamide dehydrogenase from the cyanobacterium Anabaena sp. strain P.C.C. 7119. Biochem J 288(Pt 3):823–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szymona M (1957) Utilization of inorganic polyphosphates for phosphorylation of glucose in Mycobacterium phlei. Bull Acad Pol Sci Ser Sci Biol 5:379–381

    CAS  Google Scholar 

  • Szymona M, Ostrowski W (1964) Inorganic polyphosphate glucokinase of Mycobacterium phlei. Biochim Biophys Acta 85:283–295

    CAS  PubMed  Google Scholar 

  • Szymona M, Widomski J (1974) A kinetic study on inorganic polyphosphate glucokinase from Mycobacterium tuberculosis H37RA. Physiol Chem Phys 6:393–404

    CAS  PubMed  Google Scholar 

  • Szymona O, Szymona M (1978) Multiple forms of polyphosphate-glucose phosphotransferase in various Mycobacterium strains. Acta Microbiol Pol 27:73–76

    CAS  PubMed  Google Scholar 

  • Szymona O, Szymona M (1979) Polyphosphate- and ATP-glucose phosphotransferase activities of Nocardia minima. Acta Microbiol Pol 28:153–160

    CAS  PubMed  Google Scholar 

  • Tanaka S, Lee SO, Hamaoka K, Kato J, Takiguchi N, Nakamura K, Ohtake H, Kuroda A (2003) Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. J Bacteriol 185:5654–5656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson PA, Oh H-M, Rhee G-Y (1994) Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J Phycol 30:267–273

    Article  CAS  Google Scholar 

  • Van Wazer JR (1958) Phosphorus and its compounds, vol 1. Interscience, New York

    Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57:235–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Spanish (BFU2004-00843, BFU2007-61887) and Andalusian Regional (PAIDI group BIO-261) Governments, all of them partially funded by the EU FEDER program. PAIDI group BIO-261 belongs to the CeiA3 and AndaluciaTECH University Campuses of International Excellence. The authors thank Dr. Toshikazu Shiba (RegeneTiss Co., Japan) for generously providing highly purified polyP samples and to Dr. M. R. Gómez-García for helpful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Serrano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 762kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albi, T., Serrano, A. Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates. Appl Microbiol Biotechnol 99, 3887–3900 (2015). https://doi.org/10.1007/s00253-014-6184-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6184-7

Keywords