Abstract
Biofilm formation in urinary indwelling catheters is one of the most critical issues that patients face. Catheters were coated with poly(catechin)-antibiotic conjugates with enhanced antimicrobial properties. Catechin was conjugated with two antibiotics, namely trimethoprim (TMP) and sulfamethoxazole (SMZ) via activation with N,N′-disuccinimidyl carbonate (DSC) and subsequent coupling to molecules containing α-amine moieties. Silicone and polyurethane catheters were functionalized in situ through laccase oxidation of catechin-antibiotic conjugates. Four antimicrobial coatings were produced, namely with poly(catechin), poly(catechin)-TMP, poly(catechin)-SMZ and poly(catechin)-TMP-SMZ. The bacterial adhesion reduction was tested on the functionalized devices using gram-negative and gram-positive strains. The most significant reduction in adhesion was observed with poly(catechin)-TMP (gram-negative −85 % and gram-positive −87 %) and with poly(catechin)-TMP-SMZ (gram-negative −85 % and gram-positive −91 %). The cytotoxicity to mammalian cells was tested by indirect contact for 5 days and revealed that all the tested coatings supported more than 90 % of viable cells. A promising approach for the increase of the indwelling catheter lifespan was developed aiming to reduce catheter-associated chronic infections.
This is a preview of subscription content, access via your institution.









References
Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Antimicrobial properties of electrically formed elastomeric polyurethane copper oxide nanocomposites for medical and dental applications. In: Methods in Enzymology. vol 509. American Print, San Diego, pp 87–99
Ajuwon OR, Katengua-Thamahane E, Van Rooyen J, Oguntibeju OO, Marnewick JL (2013) Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. Evid Based Complement Alternat Med 2013:19. doi:10.1155/2013/984273
Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705. doi:10.1016/j.arcmed.2005.06.009
Alberto MR, Canavosio MAR, Nadra MCMd (2011) Antimicrobial effect of polyphenols from apple skins on human bacterial pathogens. Electron J Biotechn 9(3):205–209. doi:10.2225/vol9-issue3-fulltext-1
Aldwin L, Gauney S, Groves ES, Nitecki DE, Rudolph AA, Winkelhake JL (1990) Polymer/antibiotic conjugate. US Patent 1990003252, California, US
Auzanneau C, Montaudon D, Jacquet R, Puyo S, Pouységu L, Deffieux D, Elkaoukabi-Chaibi A, De Giorgi F, Ichas F, Quideau S, Pourquier P (2012) The polyphenolic ellagitannin vescalagin acts as a preferential catalytic inhibitor of the α isoform of human DNA topoisomerase II. Mol Pharmacol 82(1):134–141. doi:10.1124/mol.111.077537
Baca AG, Brown J, Buckley DN, Nam P, O’Dwyer C, Etcheberry A (2009) State-of-the-art program on compound semiconductors 50 (SOTAPOCS 50) -and- processes at the semiconductor solution interface 3, vol 19. The Electrochemcial Society, New Jersey
Baillie GS, Douglas LJ (1999) Candida biofilms and their susceptibility to antifungal agents. In: Ron JD (ed) Methods in Enzymology. vol 310. Academic Press, pp 644–656
Bayston R, Fisher LE, Weber K (2009) An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and Gram negative bacteria. Biomaterials 30(18):3167–3173. doi:10.1016/j.biomaterials.2009.02.028
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3
Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32(3):352–418. doi:10.1016/j.progpolymsci.2006.05.003
Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145(1):93–103
Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837
Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Ag 26(5):343–356. doi:10.1016/j.ijantimicag.2005.09.002
Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Ag 38(2):99–107. doi:10.1016/j.ijantimicag.2011.02.014
Cushnie TPT, Hamilton VES, Lamb AJ (2003) Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol Res 158(4):281–289
Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotech 23(2):174–181. doi:10.1016/j.copbio.2011.08.007
Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB® combination. J Antimicrob Chemoth 64(1):88–93. doi:10.1093/jac/dkp158
Desai DG, Liao KS, Cevallos ME, Trautner BW (2010) Silver or nitrofurazone impregnation of urinary catheters has a minimal effect on uropathogen adherence. J Urol 184(6):2565–2571. doi:10.1016/j.juro.2010.07.036
Diamanti S, Arifuzzaman S, Elsen A, Genzer J, Vaia RA (2008) Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. Polymer 49(17):3770–3779. doi:10.1016/j.polymer.2008.06.020
Eckmann C, Wasserman M, Latif F, Roberts G, Beriot-Mathiot A (2013) Increased hospital length of stay attributable to Clostridium difficile infection in patients with four co-morbidities: an analysis of hospital episode statistics in four European countries. Eur J Health Econ 14(5):835–846. doi:10.1007/s10198-013-0498-8
Eliopoulos GM, Huovinen P (2001) Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32(11):1608–1614. doi:10.1086/320532
Franklin S, Bhuvana KP, Balasubramanian T (2009) Vibrational, optical and microhardness studies of trimethoprim DL-malate. Cryst Res Technol 44(12):1329–1332. doi:10.1002/crat.200900056
Fresta M, Furneri PM, Mezzasalma E, Nicolosi VM, Puglisi G (1996) Correlation of trimethoprim and brodimoprim physicochemical and lipid membrane interaction properties with their accumulation in human neutrophils. Antimicrob Agents Ch 40(12):2865–2873
Gonçalves I, Matamá T, Cavaco-Paulo A, Silva C (2013) Laccase coating of catheters with poly(catechin) for biofilm reduction. Biocatal Biotransfor Early online:1–11. doi:10.3109/10242422.2013.828711
Gopalakrishnana S, Sujathaa R (2011) Ageing studies of cardanol based polyurethanes. Res J Pharm Biol Chem Sci 2(3):1069–1080
Guimarães C, Kim S, Silva C, Cavaco-Paulo A (2011) In situ laccase-assisted overdyeing of denim using flavonoids. Biotechnol J 6(10):1272–1279. doi:10.1002/biot.201100201
Hancock REW (2005) Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 5(4):209–218. doi:10.1016/S1473-3099(05)70051-7
Hawser SP, Baillie GS, Douglas LJ (1998) Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47(3):253–256. doi:10.1099/00222615-47-3-253
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Ag 35(4):322–332. doi:10.1016/j.ijantimicag.2009.12.011
Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. BBA-Biomembranes 1147(1):132–136. doi:10.1016/0005-2736(93)90323-R
Jancel T, Dudas V (2002) Management of uncomplicated urinary tract infections. Western J Med 176:51–55
Jeon J-R, Baldrian P, Murugesan K, Chang Y-S (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microbiol Biotechnol 5(3):318–332. doi:10.1111/j.1751-7915.2011.00273.x
Jigisha A, Nishant R, Navin K, Pankaj G (2012) Green tea—a magical herb with miraculous outcomes. Int Res J Pharm 3(5):139–148
Jo S, Engel PS, Mikos AG (2000) Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer 41(21):7595–7604. doi:10.1016/S0032-3861(00)00117-8
Karou D, Dicko MH, Simpore J, Traore AS (2005) Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr J Biotechnol 4(8):823–828
Klibanov AM (2007) Permanently microbicidal materials coatings. J Mater Chem 17(24):2479–2482. doi:10.1039/b702079a
Kohnen W, Kolbenschlag C, Teske-Keiser S, Jansen B (2003) Development of a long-lasting ventricular catheter impregnated with a combination of antibiotics. Biomaterials 24(26):4865–4869. doi:10.1016/S0142-9612(03)00379-X
Kopeček J (2013) Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliver Rev 65(1):49–59. doi:10.1016/j.addr.2012.10.014
Kostakioti M, Newman CL, Thanassi DG, Stathopoulos C (2005) Mechanisms of protein export across the bacterial outer membrane. J Bacteriol 187(13):4306–4314. doi:10.1128/jb.187.13.4306-4314.2005
Kowalczuk D, Ginalska G, Golus J (2010) Characterization of the developed antimicrobial urological catheters. Int J Pharm 402(1–2):175–183. doi:10.1016/j.ijpharm.2010.10.014
Lambert JD, Hong J, G-y Y, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81(1):284S–291S
Lee VT, Schneewind O (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15(14):1725–1752. doi:10.1101/gad.896801
Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21(21):9651–9659. doi:10.1021/la0513306
Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25(13):7686–7694. doi:10.1021/la900349c
Lin R-D, Chin Y-P, Hou W-C, Lee M-H (2008) The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA). Planta Med 74(08):840–846. doi:10.1055/s-2008-1074559
Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39. doi:10.1016/S0966-842X(00)01913-2
Maoela MS, Arotiba OA, Baker PGL, Mabusela WT, Jahed N, Songa EA, Iwuoha EI (2009) Electroanalytical determination of catechin flavonoid in ethyl acetate extracts of medicinal plants. Int J Electrochem Sci 4:1497–1510
Miller LG, Tang AW (2004) Treatment of uncomplicated urinary tract infections in an era of increasing antimicrobial resistance. Mayo Clin Proc 79(8):1048–1054. doi:10.1016/S0025-6196(11)62580-9
Moini H, Arroyo A, Vaya J, Packer L (1999) Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state. Redox Rep 4(1–2):35–41. doi:10.1179/135100099101534729
Monzón M, Oteiza C, Leiva J, Amorena B (2001) Synergy of different antibiotic combinations in biofilms of Staphylococcus epidermidis. J Antimicrob Chemother 48(6):793–801. doi:10.1093/jac/48.6.793
Mot AC, Silaghi-Dumitrescu R (2012) Laccases: complex architectures for one-electron oxidations. Biochem Mosc 77(12):1395–1407. doi:10.1134/S0006297912120085
Orhan DD, Özçelik B, Özgen S, Ergun F (2010) Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res 165(6):496–504. doi:10.1016/j.micres.2009.09.002
Ouattara MB, Konaté K, Kiendrébéogo M, Ouattara N, Compaore M, Meda R, Millogo-Rasolodimby J, Nacoulma OG (2011) Antibacterial potential and antioxidant activity of polyphenols of Sesbania grandiflora. Cur Res J Biol Sci 3(4):351–356
Palacios L, Rosado H, Micol V, Rosato AE, Bernal P, Arroyo R, Grounds H, Anderson JC, Stabler RA, Taylor PW (2014) Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers. PLoS One 9(4):e93830. doi:10.1371/journal.pone.0093830
Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32(8–9):933–961. doi:10.1016/j.progpolymsci.2007.05.008
Prasanna SS, Doble M (2008) Medical biofilms—its formation and prevention using organic molecules. J Indian Inst Sci 88(1):27–35
Radjenović J, Godehardt M, Petrović M, Hein A, Farré M, Jekel M, Barceló D (2009) Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim. Environm Sci Technol 43(17):6808–6815. doi:10.1021/es900965a
Rizzo A, Carratelli CR, Losacco A, Iovene MR (2014) Antimicrobial effect of natural polyphenols with or without antibiotics on Chlamydia pneumoniae infection in vitro. Microb Drug Resist 20(1):1–10. doi:10.1089/mdr.2013.0024
Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. In: Linke D, Goldman A (eds) Bacterial adhesion. Advances in experimental medicine and biology, vol 715. Springer, Netherlands, pp 351–367
Sam SS, Chazalviel J-NJ, Gouget-Laemmel ACA, Ozanam FF, Etcheberry AA, Gabouze N-EN (2011) Peptide immobilisation on porous silicon surface for metal ions detection. Nanoscale Res Lett 6(1):412. doi:10.1186/1556-276X-6-412
Shafahi M, Vafai K (2010) Synthesis of biofilm resistance characteristics against antibiotics. Int J Heat Mass Tran 53(15–16):2943–2950. doi:10.1016/j.ijheatmasstransfer.2010.04.004
Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23(6):823–832. doi:10.1007/s11274-006-9305-3
Silva FEB, Ferrão MF, Parisotto G, Müller EI, Flores EMM (2009) Simultaneous determination of sulphamethoxazole and trimethoprim in powder mixtures by attenuated total reflection-Fourier transform infrared and multivariate calibration. J Pharmaceut Biomed 49(3):800–805. doi:10.1016/j.jpba.2008.12.011
Silva C, Matamá T, Kim S, Padrão J, Nugroho Prasetyo E, Kudanga T, Nyanhongo GS, Guebitz GM, Casal M, Cavaco-Paulo A (2011) Antimicrobial and antioxidant linen via laccase-assisted grafting. React Funct Polym 71(7):713–720. doi:10.1016/j.reactfunctpolym.2011.03.011
Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57(10):1539–1550. doi:10.1016/j.addr.2005.04.007
Steinbrecht R, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 149–172
Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New York
Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. P Natl Acad Sci 98(11):5981–5985. doi:10.1073/pnas.111143098
Ungurean A, Leopold N, David L, Chiş V (2013) Vibrational spectroscopic and DFT study of trimethoprim. Spectrochim Acta A 102:52–58. doi:10.1016/j.saa.2012.10.026
Vickers AA, Potter NJ, Fishwick CWG, Chopra I, O’Neill AJ (2009) Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemoth 63(6):1112–1117. doi:10.1093/jac/dkp090
Wandersman C (1992) Secretion across the bacterial outer membrane. Trends Genet 8(9):317–322. doi:10.1016/0168-9525(92)90264-5
Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175
Worthington RJ, Melander C (2013) Combination approaches to combat multidrug-resistant bacteria. Trends Biol 31(3):177–184. doi:10.1016/j.tibtech.2012.12.006
Zade GD, Dhoble SJ, Raut SB, Pode RB (2011) Synthesis and characterization of chlorine-methoxy-diphenylquinoline (Cl-MO-DPQ) and chlorine-methyl-diphenylquinoline (Cl-M-DPQ) blue emitting organic phosphors. J Mod Phys 2:1523–1529
Zander J, Besier S, Faetke S, Saum SH, Müller V, Wichelhaus TA (2010) Antimicrobial activities of trimethoprim/sulfamethoxazole, 5-iodo-2′-deoxyuridine and rifampicin against Staphylococcus aureus. Int J Antimicrob Ag 36(6):562–565. doi:10.1016/j.ijantimicag.2010.08.007
Acknowledgments
The authors would like to acknowledge Pronefro (Portugal) and Degania (Israel) for supplying polyurethane and silicone catheters, respectively. The author Idalina Gonçalves would like to acknowledge the NOVO project (FP7-HEALTH-2011.2.3.1-5) for funding. This work was partly supported by FEDER through POFC–COMPETE and by Portuguese funds from Fundação para a Ciência e a Tecnologia (FCT) through the project PEst-OE/BIA/UI4050/2014. The authors Carla Silva and Teresa Matamá would like to acknowledge FCT for their scholarships SFRH/BPD/46515/2008 and SFRH/BPD/47555/2008.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 233 kb)
Rights and permissions
About this article
Cite this article
Gonçalves, I., Abreu, A.S., Matamá, T. et al. Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for indwelling catheters. Appl Microbiol Biotechnol 99, 637–651 (2015). https://doi.org/10.1007/s00253-014-6128-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-6128-2