Abstract
Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L−1·O.D.−1·d−1. Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.
Similar content being viewed by others
References
Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180. doi:10.1038/Nbt.1586
Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109(1):100–109. doi:10.1002/Bit.23298
Bentley FK, Garcia-Cerdan JG, Chen HC, Melis A (2013) Paradigm of monoterpene (beta-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenerg Res 6(3):917–929. doi:10.1007/s12155-013-9325-4
Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86. doi:10.1093/Mp/Sst134
Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17(3):480–488. doi:10.1016/j.cbpa.2013.03.036
Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175. doi:10.1126/science.1088665
Dexter J, Fu PC (2009) Metabolic engineering of cyanobacteria for ethanol production. Energ Environ Sci 2(8):857–864. doi:10.1039/B811937f
Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103. doi:10.1016/j.tibtech.2010.12.003
Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668. doi:10.1128/Aem.07901-11
Elhai J, Vepritskiy A, MuroPastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179(6):1998–2005
Golden SS (1995) Light-responsive gene-expression in cyanobacteria. J Bacteriol 177(7):1651–1654
Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485. doi:10.1111/j.1469-8137.2008.02422.x
Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17(3):462–471. doi:10.1016/j.cbpa.2013.03.037
Halfmann C, Gu L, Zhou R (2014) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16(6):3175–3185. doi:10.1039/C3GC42591F
Huang HH, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7(1), Artn 10
Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593. doi:10.1093/Nar/Gkq164
Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79. doi:10.1016/j.ymben.2009.10.001
Liu XY, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108(17):6899–6904. doi:10.1073/pnas.1103014108
Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. doi:10.1038/Nbt833
Martin DM, Faldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135(4):1908–1927. doi:10.1104/pp. 104.042028
Meeks J, Castenholz R (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Mikrobiol 78(1):25–41. doi:10.1007/BF00409086
Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust 37(1):52–68. doi:10.1016/j.pecs.2010.01.003
Okada K, Hase T (2005) Cyanobacterial non-mevalonate pathway: (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus BP-1. J Biol Chem 280(21):20672–20679. doi:10.1074/jbc.M500865200
Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110(4):1249–1254. doi:10.1073/pnas.1213024110
Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82. doi:10.1016/j.ymben.2014.01.001
Paradise EM, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100(2):371–378. doi:10.1002/Bit.21766
Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172. doi:10.1016/j.biortech.2011.08.030
Pechous S, Whitaker B (2004) Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta 219(1):84–94. doi:10.1007/s00425-003-1191-4
Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162. doi:10.1002/biot.200900220
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. doi:10.1038/nature11478
Perez-Gil J, Rodriguez-Concepcion M (2013) Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 452:19–25. doi:10.1042/Bj20121899
Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207. doi:10.1016/j.ymben.2006.11.002
Qi FX, Yao L, Tan XM, Lu XF (2013) Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Biotechnol Lett 35(10):1655–1661. doi:10.1007/s10529-013-1252-0
Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2(3):136–149
Sakurai H, Masukawa H, Kitashima M, Inoue K (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C 17:1–25. doi:10.1016/j.jphotochemrev.2013.05.001
Tippmann S, Chen Y, Siewers V, Nielsen J (2013) From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8(12):1435–1444. doi:10.1002/biot.201300028
Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC, Yu JP (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energ Environ Sci 5(10):8998–9006. doi:10.1039/C2ee22555g
Velasco J (2013) Amyris meets major milestone at its farnesene production facility. Press release. Amyris Incorporated
Voegele E (2014) Amyris reports reduced farnesene production costs in 2013 results. Biomass Magazine
Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700. doi:10.1146/annurev-arplant-050312-120116
Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW (2011) Metabolic engineering of Escherichia coli for alpha-farnesene production. Metab Eng 13(6):648–655. doi:10.1016/j.ymben.2011.08.001
Yang Y, Huang XZ, Wang L, Risoul V, Zhang CC, Chen WL (2013) Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp PCC 7120. Res Microbiol 164(2):127–135. doi:10.1016/j.resmic.2012.10.010
Acknowledgments
A special thanks to David Sturdevant for his aid in the strain engineering, and Carl Fellbaum, who assisted in the development of the methodology for farnesene collection. This research is partially supported by USDA-SBIR grant 2012-33610-19524, the National Science Foundation, Energy for Sustainability Grant CBET1133951 (to R. Z.), and by South Dakota Agricultural Experiment Station.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Halfmann, C., Gu, L., Gibbons, W. et al. Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98, 9869–9877 (2014). https://doi.org/10.1007/s00253-014-6118-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-6118-4