Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 4, pp 1957–1966 | Cite as

Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria

Environmental biotechnology

Abstract

Anthropogenic activities such as mining, smelting, and industrial use have caused serious problems of metal(loid) pollution in nearly every country in the world. A wide range of environmental microorganisms are capable of transforming metal(loid)s into nanomaterials, i.e., biogenic nanomaterials (bio-NMs), in the environment. Although the impacts of various metal(loid)s on the ecosystems have been extensively studied, the potential influence of the bio-NMs generated in the environment to environmental organisms is largely unexplored. Using tellurium nanomaterials transformed from tellurite by a metal-reducing bacterium as model bio-NMs, we demonstrated that the bio-NMs significantly decreased siderophore production in an environmental bacterium Pseudomonas aeruginosa in both planktonic cultures and biofilms. Transcriptomic analysis revealed that the bio-NMs inhibited the expression of genes involved in biosynthesis and transport of siderophores. Siderophores secreted by certain bacteria in microbial communities can be considered as public goods that can be exploited by local communities, playing an important role in shaping microbial communities. The inhibition of siderophore production by the bio-NMs implies that bio-NMs may have an important influence on the ecosystems through altering specific functions of environmental bacteria. Taken together, this study provides a novel insight into the environmental impacts of metal(loid)s.

Keywords

Biofilm Pseudomonas aeruginosa Nanomaterial Shewanella oneidensis Siderophore Econanotoxicity 

Notes

Acknowledgments

This research was supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330005.C70) and a Start-up Grant (M4080847.030) from the College of Engineering, Nanyang Technological University, Singapore.

Supplementary material

253_2014_6097_MOESM1_ESM.pdf (172 kb)
ESM 1 (PDF 171 kb)

References

  1. Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A (2007) Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62(2):135–141PubMedCrossRefGoogle Scholar
  2. Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H (2011) Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U (VI) immobilization. Environ Sci Technol 45(13):5483–5490PubMedCrossRefGoogle Scholar
  3. Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen C-Y, Nace G, Irwin P (2003) A 6x6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J Microbiol Methods 55:475–479PubMedCrossRefGoogle Scholar
  5. Chua SL, Tan SY, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci U S A 109(49):20059–20064PubMedCentralPubMedCrossRefGoogle Scholar
  7. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745PubMedCrossRefGoogle Scholar
  8. Crusz S, Popat R, Rybtke M, Camara M, Givskov M, Tolker-Nielsen T, Diggle S, Williams P (2012) Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28(8):835–842PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Appl Environ Microbiol 80(4):1498–1506PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 34(3):301–333PubMedCrossRefGoogle Scholar
  11. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5(13):1213–1219PubMedCrossRefGoogle Scholar
  12. Greenwald J, Hoegy F, Nader M, Journet L, Mislin GL, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282(5):2987–2995PubMedCrossRefGoogle Scholar
  13. Gristina AG, Hobgood CD, Webb LX, Myrvik QN (1987) Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8(6):423–426PubMedCrossRefGoogle Scholar
  14. Habimana O, Steenkeste K, Fontaine-Aupart MP, Bellon-Fontaine MN, Kulakauskas S, Briandet R (2011) Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Appl Environ Microbiol 77(1):367–368PubMedCentralPubMedCrossRefGoogle Scholar
  15. Han X, Gu JD (2010) Sorption and transformation of toxic metals by microorganisms. In: Mitchell R, Gu J (eds) Environ microbiol, 2nd edn. Willy, New York, pp 153–176CrossRefGoogle Scholar
  16. Hannauer M, Yeterian E, Martin LW, Lamont IL, Schalk IJ (2010) An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa. FEBS Lett 584(23):4751–4755PubMedCrossRefGoogle Scholar
  17. Harrison F, Paul J, Massey RC, Buckling A (2007) Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2(1):49–55PubMedCrossRefGoogle Scholar
  18. Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69(12):7063–7072PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kalathil S, Lee J, Cho M (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485CrossRefGoogle Scholar
  20. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117(4):877–888PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kim D-H, Kanaly R, Hur HG (2012) Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Bioresour Technol 125:127–131PubMedCrossRefGoogle Scholar
  22. Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71(9):5607–5609PubMedCentralPubMedCrossRefGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408CrossRefGoogle Scholar
  24. Mohanty A, Kathawala MH, Zhang J, Chen WN, Loo JSC, Kjelleberg S, Yang L, Cao B (2014a) Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa. Biotechnol Bioeng 111(5):858–865PubMedCrossRefGoogle Scholar
  25. Mohanty A, Wu Y, Cao B (2014b) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-6000-4 Google Scholar
  26. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedCrossRefGoogle Scholar
  27. Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vasquez C (1998) Biochemical characterization of tellurite-reducing activities of Bacillus stearothermophilus V. Res Microbiol 149(6):389–397PubMedCrossRefGoogle Scholar
  28. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13CrossRefGoogle Scholar
  29. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726PubMedCrossRefGoogle Scholar
  30. Ng CK, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110(7):1831–1837PubMedCrossRefGoogle Scholar
  31. Peek ME, Bhatnagar A, McCarty NA, Zughaier SM (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis 2012:10Google Scholar
  32. Peralta-Videa JR, Zhao LJ, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15PubMedCrossRefGoogle Scholar
  33. Peulen T-O, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45(8):3367–3373PubMedCrossRefGoogle Scholar
  34. Prosser BL, Taylor D, Dix BA, Cleeland R (1987) Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 31(10):1502–1506PubMedCentralPubMedCrossRefGoogle Scholar
  35. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149PubMedCrossRefGoogle Scholar
  36. Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317PubMedCrossRefGoogle Scholar
  37. Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15(6):1661–1673PubMedCrossRefGoogle Scholar
  38. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854PubMedCrossRefGoogle Scholar
  39. Schofield EJ, Veeramani H, Sharp JO, Suvorova E, Bernier-Latmani R, Mehta A, Stahlman J, Webb SM, Clark DL, Conradson SD (2008) Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environ Sci Technol 42(21):7898–7904PubMedCrossRefGoogle Scholar
  40. Singh RS, Rangari VK, Sanagapalli S, Jayaraman V, Mahendra S, Singh VP (2004) Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Sol Energy Mater Sol Cells 82(1):315–330CrossRefGoogle Scholar
  41. Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109(10):2422–2436PubMedCrossRefGoogle Scholar
  42. Sivakumar K, Wang VB, Chen X, Bazan GC, Kjelleberg S, Loo SCJ, Cao B (2014) Membrane permeabilization underlies the enhancement of extracellular bioactivity in Shewanella oneidensis by a membrane-spanning conjugated oligoelectrolyte. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-5973-3
  43. Staupendahl G, Schindler K (1982) Optical tuning of a tellurium cavity: optical modulation and bistability in the infrared region at room temperature. Opt Quant Electron 14(2):157–167CrossRefGoogle Scholar
  44. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522PubMedCentralPubMedGoogle Scholar
  45. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491PubMedCentralPubMedCrossRefGoogle Scholar
  46. Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138PubMedCrossRefGoogle Scholar
  47. Stoodley P, Sauer K, Davies D, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209PubMedCrossRefGoogle Scholar
  48. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419(6903):134PubMedCrossRefGoogle Scholar
  49. Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173(3):178–186PubMedCrossRefGoogle Scholar
  50. Tsiulyanu D, Marian S, Miron V, Liess HD (2001) High sensitive tellurium based NO2 gas sensor. Sensors Actuators B Chem 73(1):35–39CrossRefGoogle Scholar
  51. Turner RJ, Borghese R, Zannoni D (2012) Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 30(5):954–963PubMedCrossRefGoogle Scholar
  52. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30PubMedCrossRefGoogle Scholar
  53. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647PubMedCrossRefGoogle Scholar
  54. West SA, Buckling A (2003) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc Lond [Biol] 270(1510):37–44CrossRefGoogle Scholar
  55. Winkelmann G, Drechsel H (2001) Microbial siderophores. In: Rehm H.-J, Reed G (eds) Biotechnology set, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, doi: 10.1002/9783527620999.ch5g
  56. Xie YP, He YP, Irwin PL, Jin T, Shi XM (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environl Microbiol 77(7):2325–2331CrossRefGoogle Scholar
  57. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(5):1318–1328PubMedCrossRefGoogle Scholar
  58. Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T (2009) Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol 74(6):1380–1392PubMedCrossRefGoogle Scholar
  59. Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38(5):1447–1459PubMedCrossRefGoogle Scholar
  60. Yurkov V, Jappé J, Verméglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62(11):4195–4198PubMedCentralPubMedGoogle Scholar
  61. Zannoni D (2010) Bacterial processing of metalloids as a tool in biotechnology. J Biotechnol 150:S52–S53CrossRefGoogle Scholar
  62. Zhang Y, Ng CK, Cohen Y, Cao B (2014) Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures. Mol BioSyst 10(5):1035–1042PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anee Mohanty
    • 1
    • 2
  • Yang Liu
    • 1
  • Liang Yang
    • 1
    • 3
  • Bin Cao
    • 1
    • 2
  1. 1.Singapore Centre on Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations