Skip to main content
Log in

The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To find more effective ways of overcoming methicillin-resistant Staphylococcus aureus (MRSA), there has been considerable interest in the use of marine-derived constituents as alternatives to control pathogenic microorganisms. In this study, we investigated whether phlorofucofuroeckol-A (PFF) isolated from the edible brown alga Eisenia bicyclis suppressed production or function of penicillin-binding protein 2a (PBP2a). The antimicrobial mode of action of PFF in MRSA was identified by measuring cell membrane integrity and using the time-kill curve method. We attempted to determine the antimicrobial effects of PFF on the expression level of the resistance determinants mecA and its regulatory genes mecI and mecR1 in MRSA by reverse transcriptase polymerase chain reaction. PFF suppressed mecI, mecR1, and mecA gene expression in a dose-dependent manner. In addition, we revealed PFF mediates the suppressive effect of PBP2a expression in MRSA by Western blot analysis. PFF suppressed production of the PBP2a protein, suggesting that PFF probably acts by controlling the methicillin resistance-associated genes involved in the cell wall and production of PBP2a. These results demonstrate that PFF isolated from E. bicyclis significantly suppressed the expression of the methicillin resistance-associated genes and production of PBP2a, which is considered the primary cause of methicillin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  PubMed  Google Scholar 

  • Alim A, Goze I, Cetin A, Atas AD, Vural N, Donmez E (2009) Antimicrobial activity of the essential oil of Cyclotrichium niveum (Boiss.) Manden. Et Scheng. Afr J Microbiol Res 3:422–425

    CAS  Google Scholar 

  • Alzahrani HA, Alsabehi R, Boukraâ L, Abdellah F, Bellik Y, Bakhotmah BA (2012) Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules 17:10540–10549

    Article  CAS  PubMed  Google Scholar 

  • American Type Culture Collection (ATCC) (2014) ATCC® Multidrug-Resistant & Antimicrobial Testing Reference strains, Assessed 25 April, 2014, http://www.atcc.org/~/media/PDFs/Multidrug%20Resistant%20%20Antimicrobial%20Strains.ashx.

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bush LM (2011) Best alternative to vancomycin for serious methicillin-resistant Staphylococcus aureus infections: let’s just say it. Clin Infect Dis 53:965–966

    Article  CAS  PubMed  Google Scholar 

  • Cox SD, Mann CM, Markham JL, Gustafson JE, Warmington JR, Wyllie SG (2001) Determining the antimicrobial actions of tea tree oil. Molecules 6:87–91

    Article  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  Google Scholar 

  • De Lencastre H, Wu SW, Pinho MG, Ludovice AM, Filipe S, Gardete S, Sobral R, Gill S, Chung M, Tomasz A (1999) Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175

    Article  PubMed  Google Scholar 

  • Dutton EK, Ottum SA, Bolken TC, Franke CA, Hruby DE (2000) Expression of active monomeric and dimeric nuclease A from the Grampositive Streptococcus gordonii surface protein expression system. Protein Expr Purif 19:158–172

  • Eom SH, Park JH, Yu DU, Choi JI, Choi JD, Lee MS, Kim YM (2011) Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fish Aquat Sci 14:251–256

    Google Scholar 

  • Eom SH, Kim DH, Lee SH, Yoon NY, Kim JH, Kim TH, Chung YH, Kim SB, Kim YM, Kim HW, Lee MS, Kim YM (2013a) In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Phytother Res 27:1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Eom SH, Lee MS, Lee EW, Kim YM, Kim TH (2013b) Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis. Phytother Res 27:148–151

    Article  CAS  PubMed  Google Scholar 

  • Foster TJ (2004) The Staphylococcus aureus “superbug”. J Clin Invest 114:1693–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould FK, Brindle R, Chadwick PR, Fraise AP, Hill S, Nathwani D, Ridgway GL, Spry MJ, Warren RE (2009) Guidelines (2008) for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the United Kingdom. J Antimicrob Chemother 63:849–861

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu K, Asada K, Suzuki E, Okonogi K, Yokota T (1992) Molecular cloning and nucleotide sequence determination of the regulator region of mecA gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett 298:133–136

  • Kateete DP, Kimani CN, Katabazi FA, Okeng A, Okee MS, Nanteza A, Joloba ML, Najjuka FC (2010) Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob 9:1–7

  • Kluytmans J, van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DS, Kang MS, Hwang HJ, Eom SH, Yang JY, Lee MS, Lee WJ, Jeon YJ, Choi JS, Kim YM (2008) Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol Bioprocess Eng 13:758–764

    Article  CAS  Google Scholar 

  • Lee DS, Jeong SY, Kim YM, Lee MS, Ahn CB, Je JY (2009) Antibacterial activity of aminoderivatized chitosans against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Med Chem 17:7108–7112

    Article  CAS  PubMed  Google Scholar 

  • Lemaire S, Van Bambeke F, Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (2007) Role of acidic pH in the susceptibility of intraphagocytic methicillin-resistant Staphylococcus aureus strains to meropenem and cloxacillin. Antimicrob Agents Chemother 51:1627–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  PubMed  Google Scholar 

  • Lim TT, Chong FN, O’Brien FG, Grubb WB (2003) Are all community methicillin-resistant Staphylococcus aureus related? A comparison of their mec regions. Pathol 35:336–343

    Article  Google Scholar 

  • Liu C, Graber CJ, Karr M (2008) A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin Infect Dis 46:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim SM, Park SD (2012) The prevalence, genotype and antimicrobial susceptibility of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. Ann Dermatol 24:32–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rebollo-Pérez J, Ordoñez-Tapia C, Herazo-Herazo C, Reyes-Ramos N (2011) Nasal carriage of Panton Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in healthy preschool children. Rev Salud Pública 13:824–832

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbour Lab. Cold Spring Harbor Laboratory Press, old Spring Harbor, NY

    Google Scholar 

  • Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T (2004) Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48:67–73

    Article  CAS  PubMed  Google Scholar 

  • Stapleton PD, Taylor PW (2002) Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 85:57–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Turlej A, Hryniewicz W, Empel J (2011) Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol J Microbiol 60:95–103

    PubMed  Google Scholar 

  • Wang Y, Zhang CL, Zhang Q, Li P (2011) Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomedicine 6:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    Article  CAS  PubMed  Google Scholar 

  • Worthington RJ, Melander C (2013) Overcoming resistance to β-lactam antibiotics. J Org Chem 78:4207–4213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Fisheries Research and Development Institute (RP-2014-FS-006). This research was also supported by a special fund of Pukyong National University donated by the SKS Trading Co. in Lynnwood, WA, USA in memory of the late Mr. Young Hwan Kang, who had deep concern for and inspiration by fishery science.

Conflict of interest

The authors declared no actual or perceived conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Mog Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, SH., Lee, DS., Jung, YJ. et al. The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus . Appl Microbiol Biotechnol 98, 9795–9804 (2014). https://doi.org/10.1007/s00253-014-6041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6041-8

Keywords

Navigation