Applied Microbiology and Biotechnology

, Volume 98, Issue 22, pp 9295–9309 | Cite as

The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus

  • Liliya Horbal
  • Anton Kobylyanskyy
  • Andrew W. Truman
  • Nestor Zaburranyi
  • Bohdan Ostash
  • Andriy Luzhetskyy
  • Flavia Marinelli
  • Victor FedorenkoEmail author
Applied genetics and molecular biotechnology


Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a “last resort” drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3–4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus.


Actinoplanes Teicoplanin Pathway-specific regulators Strain improvement Overproducer 



This work was supported by grant Bg-98 F of Ministry of education and science of Ukraine (to VF) and by the DAAD Researh Fellowship to LH (PKZ A/13/03150), grant from Fondo di Ateneo per la Ricerca to FM, by Federation of European Microbiological Societies (FEMS) Research Fellowship to AK. Authors also thank the support from Consorzio Interuniversitario per le Biotecnologie (CIB). Authors are particularly grateful to Luciano Gastaldo for his assistance in fermentations.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

253_2014_5969_MOESM1_ESM.pdf (616 kb)
ESM 1 (PDF 615 kb)


  1. Alduina R, Lo Piccolo L, D’Alia D, Ferraro C, Gunnarsson N, Donadio S, Puqlia AM (2007) Phosphate controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 189(22):8120–8129PubMedCrossRefPubMedCentralGoogle Scholar
  2. Beltrametti F, Jovetic S, Feroggio M, Gastaldo L, Selva E, Marinelli F (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot 57(1):37–44PubMedCrossRefGoogle Scholar
  3. Beltrametti F, Consolandi A, Carrano L, Bagatin F, Rossi R, Leoni L, Zennaro E, Selva E, Marinelli F (2007) Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother 51(4):1135–1141PubMedCrossRefPubMedCentralGoogle Scholar
  4. Boger DL, Kim SH, Mori Y, Weng JH, Rogel O, Castle SL, McAtee JJ (2001) First and second generation total synthesis of the teicoplanin aglycon. J Am Chem Soc 123(9):1862–1871PubMedCrossRefGoogle Scholar
  5. Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86(1):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chow AV, Jewesson PJ, Kureishi A, Phillips GL (1993) Teicoplanin versus vancomycin in the empirical treatment of febrile neutropenic patients. Eur J Haematol Suppl 54:18–24PubMedGoogle Scholar
  7. Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am 17(3):479–501CrossRefGoogle Scholar
  8. Gust B, Kieser T, Chater K (2002) PCR targeting system in Streptomyces coelicolor A3(2). The John Innes Foundation, NorwichGoogle Scholar
  9. Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238PubMedCrossRefGoogle Scholar
  10. Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V (2012) Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J Microbiol Biotechnol 28(5):2095–2100PubMedCrossRefGoogle Scholar
  11. Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V (2013) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus-producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372PubMedCrossRefGoogle Scholar
  12. Hutchings MI, Hong HJ, Buttner MJ (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59(3):923–935PubMedCrossRefGoogle Scholar
  13. Jung HM, Kim SY, Prabhu P, Moon HJ, Kim IW, Lee JK (2008) Optimization of culture conditions and scale-up to plant scales for teicoplanin production by Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 80(3):21–27PubMedCrossRefGoogle Scholar
  14. Jung HM, Jeya M, Kim SY, Moon HJ, Kumar Singh R, Zhang YW, Lee JK (2009) Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives. Appl Microbiol Biotechnol 84(3):417–428PubMedCrossRefGoogle Scholar
  15. Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448PubMedCrossRefGoogle Scholar
  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  17. Lee JC, Park HR, Park DJ, Son KH, Yoon KH, Kim YB, Kim CJ (2003) Production of teicoplanin by a mutant of Actinoplanes teichomyceticus. Biotechnol Lett 25(7):537–540PubMedCrossRefGoogle Scholar
  18. Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11(1):107–119PubMedGoogle Scholar
  19. Marcone GL, Carrano L, Marinelli F, Beltrametti F (2010) Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot (Tokyo) 63(2):83–88CrossRefGoogle Scholar
  20. Medema MH, Alam MT, Breitling R, Takano E (2011) The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2(4):230–233PubMedCrossRefGoogle Scholar
  21. Muth G, Nussbaumer B, Wohlleben W, Puhler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348CrossRefGoogle Scholar
  22. Shawky RM, Puk O, Wietzorrek A, Pelzer S, Takano E, Wohlleben W, Stegmann E (2007) The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 13(1–3):76–88PubMedCrossRefGoogle Scholar
  23. Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26(6):917–923PubMedCrossRefPubMedCentralGoogle Scholar
  24. Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150(1):95–102PubMedCrossRefGoogle Scholar
  25. Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemoter 53(10):4069–4079CrossRefGoogle Scholar
  26. Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Fact 10(82):1–13Google Scholar
  27. Truman AW, Robinson L, Spencer JB (2006) Identification of a deacetylase involved in the maturation of teicoplanin. ChemBioChem 7:1670–1675Google Scholar
  28. Truman AW, Fan Q, Rӧttgen M, Stegmann E, Leadlay PF, Spencer JB (2008) The role of Cep15 in the biosynthesis of chloroeremomycin: reactivation of an ancestral catalytic function. Chem Biol 15(5):476–484PubMedCrossRefGoogle Scholar
  29. Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM (2004) Glycopeptide antibiotics from conventional molecules to new derivatives. Drugs 64(9):913–936PubMedCrossRefGoogle Scholar
  30. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333PubMedCrossRefGoogle Scholar
  31. Wood MJ (1996) The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother 37(2):209–222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Liliya Horbal
    • 1
  • Anton Kobylyanskyy
    • 2
  • Andrew W. Truman
    • 5
  • Nestor Zaburranyi
    • 1
  • Bohdan Ostash
    • 1
  • Andriy Luzhetskyy
    • 4
  • Flavia Marinelli
    • 2
    • 3
  • Victor Fedorenko
    • 1
    Email author
  1. 1.Department of Genetics and BiotechnologyIvan Franko National University of LvivLvivUkraine
  2. 2.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  3. 3.“The Protein Factory” Research Center Politecnico of MilanoICRM CNR Milano and University of InsubriaVareseItaly
  4. 4.Helmholtz-Institute for Pharmaceutical Research SaarlandSaarbruckenGermany
  5. 5.Department of Molecular MicrobiologyJohn Innes CentreNorwichUK

Personalised recommendations