Skip to main content

Advertisement

Log in

Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV–Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Halim ES, El-Rafie MH, Salem Al-Deyab S (2011) Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym 85:692–697

    Article  CAS  Google Scholar 

  • Ara K, Hama M, Akiba S, Koike K, Okisaka K, Hagura T, Kamiya T, Tomita F (2006) Foot odor due to microbial metabolism and its control. Can J Microbiol 52:357–364

    Article  PubMed  CAS  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Budama L, Cakir BA, Topel O, Hoda N (2013) A new strategy for producing antibacterial textile surfaces using silver nanoparticles. Chem Eng J 228:489–495

    Article  CAS  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  PubMed  CAS  Google Scholar 

  • Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A 345:202–210

    Article  CAS  Google Scholar 

  • Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BLV (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem A Eur J 14:10244–10250

    Article  CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369:27–33

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  PubMed  CAS  Google Scholar 

  • Fiebach K, Grimm D (2000) Ullmann’s encyclopedia of industrial chemistry: resins, natural. Willy, Weinheim. doi:10.1002/14356007.a23_073, http://onlinelibrary.wiley.com/doi/10.1002/14356007.a23_073/abstract

    Google Scholar 

  • Gils PS, Ray D, Sahoo PK (2010) Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol 46:237–244

    Article  PubMed  CAS  Google Scholar 

  • Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208–4218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nanoparticles for medical applications. Carbohydr Polym 92:407–413

    Article  PubMed  CAS  Google Scholar 

  • Kanlayavattanakul M, Lourith N (2011) Body malodours and their topical treatment agents. Int J Cosmet Sci 33:298–311

    Article  PubMed  CAS  Google Scholar 

  • Kanmani P, Lim ST (2013) Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym 97:421–428

    Article  PubMed  CAS  Google Scholar 

  • Kim J (2005) Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211:191–192

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I Early Uses Burns 26:117–130

    CAS  Google Scholar 

  • Kora AJ, Arunachalam J (2012) Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. J Nanomat. http://dl.acm.org/citation.cfm?id=2351223. doi:10.1155/2012/869765

  • Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679

    Article  CAS  Google Scholar 

  • Kora AJ, Beedu SR, Jayaraman A (2012a) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett 2:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2012b) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520

    Article  CAS  Google Scholar 

  • Kudle KR, Donda MR, Merugu R, Prashanthu Y, Kudle MK, Prathaprudar MP (2013a) Green synthesis of silver nanoparticles using water soluble gum of Sterculia foetida and evaluation of its antimicrobial activity. Indian J Pharm Sci 4:563–568

    Google Scholar 

  • Kudle MR, Kudle KR, Manisha MR, Prathaprudar MP, Rudra P (2013b) Synthesis, characterization and antimicrobial activity of silver nanoparticles formed using Moringa oleifera lam gum. Nanosci Nanotechnol: An Int J 3:45–48

    Google Scholar 

  • Kulthong K, Srisung S, Boonpavanitchaku K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977

    CAS  Google Scholar 

  • Lic V, Saponjic Z, Vodnik V, Potkonjak B, Jovancic P, Nedeljkovic J, Radetic M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 78:564–569

    Article  Google Scholar 

  • Mandal A, Meda V, Zhang WJ, Farhan KM, Gnanamani A (2012) Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf B 90:191–196

    Article  CAS  Google Scholar 

  • Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B (2007) Preparation of acacia-stabilized silver nanoparticles: a green approach. J Appl Polym Sci 106:3375–3381

    Article  CAS  Google Scholar 

  • Nagajyothi PC, Lee SE, An M, Lee KD (2012) Green synthesis of silver and gold nanoparticles using Lonicera japonica flower extract. Bull Korean Chem Soc 33:2609–2612

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palkin S, Smith WC (1938) A new non-crystallizing gum rosin. Oil Soap 15:120–122

    Article  CAS  Google Scholar 

  • Quelemes PV, Araruna FB, De Faria BE, Kuckelhaus SA, Da Silva DA, Mendonça RZ, Eiras C, Dos S, Soares MJ, Leite JR (2013) Development and antibacterial activity of cashew gum-based silver nanoparticles. Int J Mol Sci 14:4969–4981

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajendran R, Radhai R, Kotresh TM, Csiszar E (2013) Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym 16:613–617

    Article  Google Scholar 

  • Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J (2014) Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118:111–117

    Article  PubMed  CAS  Google Scholar 

  • Ravindra S, MuraliMohan Y, NarayanaReddy N, MohanaRaju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A 367:31–40

    Article  CAS  Google Scholar 

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290

    PubMed  PubMed Central  Google Scholar 

  • Taglietti A, Arciola CR, Agostino AD, Dacarro G, Montanaro L, Campoccia D, Cucca L, Vercellino M, Poggi A, Pallavicini P, Visai L (2014) Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 35:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Ul-Islam S, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260

    Article  Google Scholar 

  • Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Malarkodi C, Annadurai G (2013a) Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv Appl Sci Res 4:50–55

    CAS  Google Scholar 

  • Vanaja M, Gnanajobitha G, Paulkumar K, Rajeshkumar S, ChelladuraiMalarkodi C, Annadurai G (2013b) Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostructure Chem 3:17–20

    Article  Google Scholar 

  • Venkatesham M, Ayodhya D, Madhusudhan A, Kumari AS, Veerabhadram G, Mangatayaru KG (2013) A novel green synthesis of silver nanoparticles using gum karaya: characterization, antimicrobial and catalytic activity studies. J Clust Sci 25:409–422

    Article  Google Scholar 

  • Wigginton NS, De Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJ (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168

    Article  PubMed  CAS  Google Scholar 

  • Xuejiao F, Shuping XU, Weiqing XU (2012) Green synthesis of metal nanoparticles by Sesbania gum. http://www.paper.edu.cn/en_releasepaper/content/4494459

  • Yang N, Li WH (2013) Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crop Prod 48:81–88

    Article  CAS  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C-MJ, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korean National Research Foundation (Korean Ministry of Education, Science and Technology, Award NRF-2011-35B-D00020). The preparation of this manuscript was supported by research funds of Chonbuk National University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Taek Oh.

Additional information

Palanivel Velmurugan and Sang-Myeong Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmurugan, P., Lee, SM., Cho, M. et al. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98, 8179–8189 (2014). https://doi.org/10.1007/s00253-014-5945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5945-7

Keywords

Navigation