Skip to main content
Log in

Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Interaction between denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes may play an important role in global carbon and nitrogen cycles. In this study, a coculture of denitrifying methanotrophs (DAMO archaea and DAMO bacteria) and anammox bacteria, initially sourced from the environment, was enriched with a supply of methane, nitrate, and ammonium. After a 4.5-month enrichment, simultaneous oxidation of methane and ammonium and reduction of nitrate were observed. The highest rate of nitrate reduction in the suspended DAMO culture was 4.84 mmol/L/day, and simultaneously, the highest ammonium removal rate was 4.07 mmol/L/day. Fluorescence in situ hybridization and analysis of 16S rRNA gene clone libraries revealed the coexistence of DAMO archaea, DAMO bacteria, and anammox bacteria. The development of anammox bacteria might reduce the enrichment time of DAMO microorganisms and promote the activity of DAMO archaea. The activity of the reactor fluctuated during the long-term operation, which might be caused by the formation of microbial clusters whereby DAMO archaea grew in aggregates that were surrounded by anammox and DAMO bacteria. This study is the first to demonstrate that it is feasible to establish a coculture of DAMO archaea, DAMO bacteria, and anammox bacteria from environmental inocula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alperin MJ, Hoehler TM (2010) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am J Sci 309(10):869–957

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, D.C

    Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18):6791–6799

    Article  CAS  PubMed  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  CAS  PubMed  Google Scholar 

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77(13):4429–4436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71(12):8925–8928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10(11):3164–3173

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75(11):3656–3662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570

    Article  CAS  PubMed  Google Scholar 

  • He Z, Cai C, Geng S, Lou L, Xu X, Zheng P, Hu B (2013) Mdodeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan Z (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1(5):377–384

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zeng RJ, Keller J, Lant PA, Yuan Z (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ Microbiol Rep 3(3):315–319

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Speth DR, Francoijs KJ, Quan ZX, Jetten MS (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium “Candidatus Jettenia asiatica”. Front Microbiol. doi:10.3389/fmicb.2012.00366

    Google Scholar 

  • Kampman C, Hendrickx TLG, Luesken FA, van Alen TA, Camp HJ, Jetten MSM, Zeeman G, Buisman CJN, Temmink H (2012) Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment. J Hazard Mater 227-228:164–171

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63(1):311–334

    Article  CAS  PubMed  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6(4):320–326

    Article  CAS  PubMed  Google Scholar 

  • Luesken FA, Sanchez J, van Alen TA, Sanabria J, Op den Camp HJ, Jetten MSM, Kartal B (2011a) Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl Environ Microbiol 77(19):6802–6807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TL, Zeeman G, Temmink H, Strous M, Op den Camp HJ, Jetten MSM (2011b) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92(4):845–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luesken FA, Wu ML, den Camp H, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14(4):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–305

    Article  CAS  PubMed  Google Scholar 

  • Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5(6):1587–1599

    Article  CAS  Google Scholar 

  • Orphan VJ, Turk KA, Green AM, House CH (2009) Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol 11(7):1777–1791

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe Damsté JS, Harris J, Shaw P, Jetten MSM, Strous M (2003) CandidatusScalindua brodae”, sp. nov., CandidatusScalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26(4):529–538

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z (2013) Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 47(20):11577–11583

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Van Gerven E, Kuenen JG, Jetten M (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl Environ Microbiol 63(6):2446–2448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waki M, Suzuki K, Osada T, Tanaka Y (2005) Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresour Technol 96(8):921–927

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MSM, Yin C, Op den Camp HJM (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil. Fems Microbiol Lett 336(2):79–88

    Article  CAS  PubMed  Google Scholar 

  • Werner M, Kayser R (1991) Denitrification with biogas as external carbon source. Water Sci Technol 23(4–6):701–708

    CAS  Google Scholar 

  • Yang J, Jiang H, Wu G, Hou W, Sun Y, Lai Z, Dong H (2012) Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Front Earth Sci 6(4):383–391

    Article  CAS  Google Scholar 

  • Zhu G, Jetten MSM, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86(4):1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Sanchez J, van Alen TA, Sanabria J, Jetten MSM, Ettwig KF, Kartal B (2011) Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Biochem Soc Trans 39(6):1822–1825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Science Foundation of China (51178444), the Hundred-Talent Program of Chinese Academy of Sciences, China Postdoctoral Science Foundation (No. 2014M551054), and the Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, ZW., Ding, J., Fu, L. et al. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol 98, 10211–10221 (2014). https://doi.org/10.1007/s00253-014-5936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5936-8

Keywords

Navigation