Skip to main content

An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment

Abstract

A cold-active α-amylase, AmyI3C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the AmyI3C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and k cat to a mesophilic α-amylase. AmyI3C6 was shown to be heat-labile. Temperature optimum was at 10–15 °C, and more than 70 % of the relative activity was retained at 1 °C. The pH optimum of AmyI3C6 was at pH 8–9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the AmyI3C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anthon GE, Barrett DM (2002) Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone. Anal Biochem 305:287–289. doi:10.1006/abio.2002.5644

    CAS  Article  PubMed  Google Scholar 

  • Asgher M, Asad MJ, Rahman SU, Legge RL (2007) A thermostable alpha-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 79:950–955. doi:10.1016/j.jfoodeng.2005.12.053

    CAS  Article  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. doi:10.1093/nar/gku340

    PubMed  PubMed Central  Google Scholar 

  • Bisgaard-Frantzen H, Svendsen A, Norman B, Pedersen S, Kjaerulff S, Outtrup H, Borchert TV (1999) Development of industrially important alpha-amylases. J Appl Glycosci 46:199–206. doi:10.5458/jag.46.199

    CAS  Article  Google Scholar 

  • Buchardt B, Seaman P, Stockmann G, Vous M, Wilken U, Duwel L, Kristiansen A, Jenner C, Whiticar MJ (1997) Submarine columns of ikaite tufa. Nature 390:129–130. doi:10.1038/36474

    CAS  Article  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd OS, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460. doi:10.1111/j.1751-7915.2011.00258.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Christiansen C, Abou HM, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J 276:5006–5029. doi:10.1111/j.1742-4658.2009.07221.x

    CAS  Article  PubMed  Google Scholar 

  • Cipolla A, D'Amico S, Barumandzadeh R, Matagne A, Feller G (2011) Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic alpha-amylase from Antarctic bacterium. J Biol Chem 286:38348–38355. doi:10.1074/jbc.M111.274423

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Coronado M, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    CAS  PubMed  Google Scholar 

  • Cusano AM, Parrilli E, Marino G, Tutino ML (2006) A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 5:40. doi:10.1186/1475-2859-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840. doi:10.1155/2013/512840

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    CAS  Article  PubMed  Google Scholar 

  • Feller G, Lonhienne T, Deroanne C, Libioulle C, Van BJ, Gerday C (1992) Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267:5217–5221

    CAS  PubMed  Google Scholar 

  • Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222:441–447. doi:10.1111/j.1432-1033.1994.tb18883.x

    CAS  Article  PubMed  Google Scholar 

  • Fincan SA, Enez B (2014) Production, purification, and characterization of thermostable alpha-amylase from thermophilic Geobacillus stearothermophilus. Starch-Starke 66:182–189. doi:10.1002/star.201200279

    CAS  Article  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107. doi:10.1016/S0167-7799(99)01413-4

    CAS  Article  PubMed  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488. doi:10.1007/s00792-004-0409-0

    CAS  Article  PubMed  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. doi:10.1007/s00253-002-0975-y

    CAS  Article  PubMed  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial alpha-amylases: a biotechnological perspective. Process Biochem 38:1599–1616. doi:10.1016/S0032-9592(03)00053-0

    CAS  Article  Google Scholar 

  • Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M (2008) Purification and biochemical characterization of a novel alpha-amylase from Bacillus licheniformis NH1—cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem 43:499–510. doi:10.1016/j.procbio.2008.01.017

    CAS  Article  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi:10.1016/S0958-1669(02)00328-2

    CAS  Article  PubMed  Google Scholar 

  • Linden A, Wilmanns M (2004) Adaptation of class-13 alpha-amylases to diverse living conditions. Chembiochem 5:231–239. doi:10.1002/cbic.200300734

    CAS  Article  PubMed  Google Scholar 

  • Lu M, Wang S, Fang Y, Li H, Liu S, Liu H (2010) Cloning, expression, purification, and characterization of cold-adapted alpha-amylase from Pseudoalteromonas arctica GS230. Protein J 29:591–597. doi:10.1007/s10930-010-9290-0

    CAS  Article  PubMed  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis alpha-amylase through a disorder - > order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292. doi:10.1016/S0969-2126(98)00032-X

    CAS  Article  PubMed  Google Scholar 

  • Mahdavi A, Sajedi RH, Rassa M, Jafarian V (2010) Characterization of an α-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran J Biotech 8

  • Mojallali L, Shahbani ZH, Rajaei S, Akbari NK, Haghbeen K (2013) A novel approximately 34-kDa alpha-amylase from psychrotroph Exiguobacterium sp. SH3: Production, purification, and characterization. Biotechnol Appl Biochem 61:118–125. doi:10.1002/bab.1140

    Article  PubMed  Google Scholar 

  • Nirmala M, Muralikrishna G (2003) Three alpha-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf-15) - purification and partial characterization. Phytochemistry 62:21–30. doi:10.1016/S0031-9422(02)00443-0

    CAS  Article  PubMed  Google Scholar 

  • Pakchung AAH, Simpson PJL, Codd R (2006) Life on earth. Extremophiles continue to move the goal posts. Environ Chem 3:77–93. doi:10.1071/EN05093

    CAS  Article  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152. doi:10.1042/BA19990073

    CAS  Article  PubMed  Google Scholar 

  • Parrilli E, De VD, Cirulli C, Tutino ML (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2. doi:10.1186/1475-2859-7-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    CAS  Article  PubMed  Google Scholar 

  • Rajesh T, Kim YH, Choi YK, Jeon JM, Kim HJ, Park SH, Park HY, Choi KY, Kim H, Kim HJ, Lee SH, Yang YH (2013) Identification and functional characterization of an alpha-amylase with broad temperature and pH stability from Paenibacillus sp. Appl Biochem Biotechnol 170:359–369. doi:10.1007/s12010-013-0197-z

    CAS  Article  PubMed  Google Scholar 

  • Sai RM, Rao CV, Seenayya G (1991) Characteristics of Clostridium thermocellum strain SS8:a broad saccharolytic thermophile. World J Microbiol Biotechnol 7:272–275. doi:10.1007/BF00329001

    Article  Google Scholar 

  • Samie N, Noghabi KA, Gharegozloo Z, Zahiri HS, Ahmadian G, Sharafi H, Behrozi R, Vali H (2012) Psychrophilic alpha-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochem 47:1381–1387. doi:10.1016/j.procbio.2012.05.007

    CAS  Article  Google Scholar 

  • Schmidt M, Prieme A, Stougaard P (2006) Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 10:551–562. doi:10.1007/s00792-006-0529-9

    CAS  Article  PubMed  Google Scholar 

  • Shih NJ, Labbe RG (1995) Purification and characterization of an extracellular alpha-amylase from Clostridium perfringens type A. Appl Environ Microbiol 61:1776–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar N, Li N, Tang JW, Patel BK, Swaminathan K (2006) Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett 580:2646–2652. doi:10.1016/j.febslet.2006.04.017

    CAS  Article  PubMed  Google Scholar 

  • Stougaard P, Jorgensen F, Johnsen MG, Hansen OC (2002) Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland. Environ Microbiol 4:487–493

    CAS  Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Asano T, Nakazawa M, Miyatake K, Inouye K (2008) Purification and characterization of novel raw-starch-digesting and cold-adapted alpha-amylases from Eisenia foetida. Comp Biochem Physiol B Biochem Mol Biol 150:125–130. doi:10.1016/j.cbpb.2008.02.003

    Article  PubMed  Google Scholar 

  • Ueki A, Hirono T, Sato E, Mitani A, Ueki K (1991) Ethanol and amylase production by a newly isolated Clostridium sp. World J Microbiol Biotechnol 7:385–393. doi:10.1007/BF00329407

    CAS  Article  PubMed  Google Scholar 

  • van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155. doi:10.1016/S0168-1656(01)00407-2

    Article  PubMed  Google Scholar 

  • Vester JK, Lylloff JE, Glaring MA, Stougaard P (2013) Microbial diversity and enzymes in ikaite columns: a cold and alkaline environment in Greenland. In: Seckbach J, Oren A, Stan-Lotter H (ed) Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Netherlands, pp 365-380

  • Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Fact 13:72. doi:10.1186/1475-2859-13-72

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y (2006) Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica. Biotechnol J 1:1258–1265. doi:10.1002/biot.200600098

    CAS  Article  PubMed  Google Scholar 

  • Zhang JW, Zeng RY (2008) Purification and characterization of a cold-adapted alpha-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Mar Biotechnol 10:75–82. doi:10.1007/s10126-007-9035-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Government of Greenland is thanked for the permission to sample ikaite material. Novozymes A/S, Denmark, is acknowledged for the Stainzyme® used. This work was supported by a grant to JKV from University of Copenhagen and to PS from the Danish Environmental Protection Agency.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stougaard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 542 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vester, J.K., Glaring, M.A. & Stougaard, P. An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 99, 717–727 (2015). https://doi.org/10.1007/s00253-014-5931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5931-0

Keywords

  • α-Amylase
  • Cold-active
  • Heat-labile
  • Alkaline-active
  • Detergents
  • Clostridia